unleashed-firmware/lib/subghz/protocols/faac_slh.c
2023-09-02 21:45:51 +03:00

696 lines
26 KiB
C

#include "faac_slh.h"
#include "../subghz_keystore.h"
#include <m-array.h>
#include "keeloq_common.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#include "../blocks/custom_btn_i.h"
#define TAG "SubGhzProtocolFaacSLH"
static const SubGhzBlockConst subghz_protocol_faac_slh_const = {
.te_short = 255,
.te_long = 595,
.te_delta = 100,
.min_count_bit_for_found = 64,
};
struct SubGhzProtocolDecoderFaacSLH {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
struct SubGhzProtocolEncoderFaacSLH {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
typedef enum {
FaacSLHDecoderStepReset = 0,
FaacSLHDecoderStepFoundPreambula,
FaacSLHDecoderStepSaveDuration,
FaacSLHDecoderStepCheckDuration,
} FaacSLHDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_faac_slh_decoder = {
.alloc = subghz_protocol_decoder_faac_slh_alloc,
.free = subghz_protocol_decoder_faac_slh_free,
.feed = subghz_protocol_decoder_faac_slh_feed,
.reset = subghz_protocol_decoder_faac_slh_reset,
.get_hash_data = subghz_protocol_decoder_faac_slh_get_hash_data,
.serialize = subghz_protocol_decoder_faac_slh_serialize,
.deserialize = subghz_protocol_decoder_faac_slh_deserialize,
.get_string = subghz_protocol_decoder_faac_slh_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_faac_slh_encoder = {
.alloc = subghz_protocol_encoder_faac_slh_alloc,
.free = subghz_protocol_encoder_faac_slh_free,
.deserialize = subghz_protocol_encoder_faac_slh_deserialize,
.stop = subghz_protocol_encoder_faac_slh_stop,
.yield = subghz_protocol_encoder_faac_slh_yield,
};
const SubGhzProtocol subghz_protocol_faac_slh = {
.name = SUBGHZ_PROTOCOL_FAAC_SLH_NAME,
.type = SubGhzProtocolTypeDynamic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_AM |
SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save |
SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_faac_slh_decoder,
.encoder = &subghz_protocol_faac_slh_encoder,
};
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manufacture_name
*/
static void subghz_protocol_faac_slh_check_remote_controller(
SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name);
void* subghz_protocol_encoder_faac_slh_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolEncoderFaacSLH* instance = malloc(sizeof(SubGhzProtocolEncoderFaacSLH));
instance->base.protocol = &subghz_protocol_faac_slh;
instance->generic.protocol_name = instance->base.protocol->name;
instance->keystore = subghz_environment_get_keystore(environment);
instance->encoder.repeat = 10;
instance->encoder.size_upload = 256;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_faac_slh_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderFaacSLH* instance = context;
free(instance->encoder.upload);
free(instance);
}
static bool subghz_protocol_faac_slh_gen_data(SubGhzProtocolEncoderFaacSLH* instance) {
// Stupid bypass for custom button, remake later
if(subghz_custom_btn_get_original() == 0) {
subghz_custom_btn_set_original(0xF);
}
uint8_t custom_btn_id = subghz_custom_btn_get();
ProgMode prog_mode_btn_status = subghz_custom_btn_get_prog_mode();
bool button_for_programming = false;
FURI_LOG_I("GENDATA", "CUSTOMBTN: %d\r", subghz_custom_btn_get());
// If custom button left is pressed, enable programming mode and disable it on Ok button
if((custom_btn_id == SUBGHZ_CUSTOM_BTN_OK)) {
if(prog_mode_btn_status == PROG_MODE_FAAC_SLH) {
button_for_programming = false;
prog_mode_btn_status = PROG_MODE_OFF;
}
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_UP) {
button_for_programming = true;
prog_mode_btn_status = PROG_MODE_FAAC_SLH;
}
subghz_custom_btn_set_prog_mode(prog_mode_btn_status);
FURI_LOG_I("FAAC", "Button for programming: %d\r", button_for_programming);
FURI_LOG_I("FAAC", "Programming mode: %d\r", instance->generic.prg_mode);
if(button_for_programming) {
uint8_t data_tmp = 0;
uint8_t data_prg[8];
data_prg[0] = 0x00;
if(instance->generic.allow_zero_seed || (instance->generic.seed != 0x0)) {
instance->generic.cnt += furi_hal_subghz_get_rolling_counter_mult();
}
data_prg[1] = instance->generic.cnt & 0xFF;
data_prg[2] = (uint8_t)(instance->generic.seed & 0xFF);
data_prg[3] = (uint8_t)(instance->generic.seed >> 8 & 0xFF);
data_prg[4] = (uint8_t)(instance->generic.seed >> 16 & 0xFF);
data_prg[5] = (uint8_t)(instance->generic.seed >> 24);
data_prg[2] ^= data_prg[1];
data_prg[3] ^= data_prg[1];
data_prg[4] ^= data_prg[1];
data_prg[5] ^= data_prg[1];
for(uint8_t i = data_prg[1] & 0x0F; i != 0; i--) {
data_tmp = data_prg[5];
data_prg[5] = ((data_prg[5] << 1) & 0xFF) | (data_prg[4] & 0x80) >> 7;
data_prg[4] = ((data_prg[4] << 1) & 0xFF) | (data_prg[3] & 0x80) >> 7;
data_prg[3] = ((data_prg[3] << 1) & 0xFF) | (data_prg[2] & 0x80) >> 7;
data_prg[2] = ((data_prg[2] << 1) & 0xFF) | (data_tmp & 0x80) >> 7;
}
data_prg[6] = 0x0F;
data_prg[7] = 0x52;
uint32_t enc_prg_1 = data_prg[7] << 24 | data_prg[6] << 16 | data_prg[5] << 8 |
data_prg[4];
uint32_t enc_prg_2 = data_prg[3] << 24 | data_prg[2] << 16 | data_prg[1] << 8 |
data_prg[0];
instance->generic.data = (uint64_t)enc_prg_1 << 32 | enc_prg_2;
FURI_LOG_I(TAG, "New MasterKey encrypted : %016llX\r", instance->generic.data);
return true;
} else {
if(!instance->generic.allow_zero_seed && (instance->generic.seed == 0x0)) {
// Do not generate new data, send data from buffer
return true;
}
}
uint32_t fix = instance->generic.serial << 4 | instance->generic.btn;
uint32_t hop = 0;
uint32_t decrypt = 0;
uint64_t man = 0;
int res = 0;
char fixx[8] = {};
int shiftby = 32;
for(int i = 0; i < 8; i++) {
fixx[i] = (fix >> (shiftby -= 4)) & 0xF;
}
if(instance->generic.allow_zero_seed || (instance->generic.seed != 0x0)) {
instance->generic.cnt += furi_hal_subghz_get_rolling_counter_mult();
}
if((instance->generic.cnt % 2) == 0) {
decrypt = fixx[6] << 28 | fixx[7] << 24 | fixx[5] << 20 |
(instance->generic.cnt & 0xFFFFF);
} else {
decrypt = fixx[2] << 28 | fixx[3] << 24 | fixx[4] << 20 |
(instance->generic.cnt & 0xFFFFF);
}
for
M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
res = strcmp(furi_string_get_cstr(manufacture_code->name), instance->manufacture_name);
if(res == 0) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_FAAC:
//FAAC Learning
man = subghz_protocol_keeloq_common_faac_learning(
instance->generic.seed, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
break;
}
break;
}
}
if(hop) {
instance->generic.data = (uint64_t)fix << 32 | hop;
}
return true;
}
bool subghz_protocol_faac_slh_create_data(
void* context,
FlipperFormat* flipper_format,
uint32_t serial,
uint8_t btn,
uint32_t cnt,
uint32_t seed,
const char* manufacture_name,
SubGhzRadioPreset* preset) {
furi_assert(context);
// roguemaster don't steal!!!
SubGhzProtocolEncoderFaacSLH* instance = context;
instance->generic.serial = serial;
instance->generic.btn = btn;
instance->generic.cnt = (cnt & 0xFFFFF);
instance->generic.seed = seed;
instance->manufacture_name = manufacture_name;
instance->generic.data_count_bit = 64;
instance->generic.allow_zero_seed = true;
bool res = subghz_protocol_faac_slh_gen_data(instance);
if(res) {
return SubGhzProtocolStatusOk ==
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
return res;
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderFaacSLH instance
* @return true On success
*/
static bool subghz_protocol_encoder_faac_slh_get_upload(SubGhzProtocolEncoderFaacSLH* instance) {
furi_assert(instance);
subghz_protocol_faac_slh_gen_data(instance);
size_t index = 0;
size_t size_upload = 2 + (instance->generic.data_count_bit * 2);
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send header
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_faac_slh_const.te_long * 2);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_faac_slh_const.te_long * 2);
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_faac_slh_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_faac_slh_const.te_short);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_faac_slh_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_faac_slh_const.te_long);
}
}
return true;
}
SubGhzProtocolStatus
subghz_protocol_encoder_faac_slh_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderFaacSLH* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
do {
if(SubGhzProtocolStatusOk !=
subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
uint8_t seed_data[sizeof(uint32_t)] = {0};
for(size_t i = 0; i < sizeof(uint32_t); i++) {
seed_data[sizeof(uint32_t) - i - 1] = (instance->generic.seed >> i * 8) & 0xFF;
}
if(!flipper_format_read_hex(flipper_format, "Seed", seed_data, sizeof(uint32_t))) {
FURI_LOG_E(TAG, "Missing Seed");
break;
}
bool allow_zero_seed;
if(flipper_format_read_bool(flipper_format, "AllowZeroSeed", &allow_zero_seed, 1)) {
instance->generic.allow_zero_seed = true;
} else {
instance->generic.allow_zero_seed = false;
}
instance->generic.seed = seed_data[0] << 24 | seed_data[1] << 16 | seed_data[2] << 8 |
seed_data[3];
subghz_protocol_faac_slh_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_encoder_faac_slh_get_upload(instance);
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
break;
}
instance->encoder.is_running = true;
res = SubGhzProtocolStatusOk;
} while(false);
return res;
}
void subghz_protocol_encoder_faac_slh_stop(void* context) {
SubGhzProtocolEncoderFaacSLH* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_faac_slh_yield(void* context) {
SubGhzProtocolEncoderFaacSLH* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_faac_slh_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderFaacSLH* instance = malloc(sizeof(SubGhzProtocolDecoderFaacSLH));
instance->base.protocol = &subghz_protocol_faac_slh;
instance->generic.protocol_name = instance->base.protocol->name;
instance->keystore = subghz_environment_get_keystore(environment);
return instance;
}
void subghz_protocol_decoder_faac_slh_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
free(instance);
}
void subghz_protocol_decoder_faac_slh_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
void subghz_protocol_decoder_faac_slh_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
switch(instance->decoder.parser_step) {
case FaacSLHDecoderStepReset:
if((level) && (DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_long * 2) <
subghz_protocol_faac_slh_const.te_delta * 3)) {
instance->decoder.parser_step = FaacSLHDecoderStepFoundPreambula;
}
break;
case FaacSLHDecoderStepFoundPreambula:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_long * 2) <
subghz_protocol_faac_slh_const.te_delta * 3)) {
//Found Preambula
instance->decoder.parser_step = FaacSLHDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepSaveDuration:
if(level) {
if(duration >= ((uint32_t)subghz_protocol_faac_slh_const.te_short * 3 +
subghz_protocol_faac_slh_const.te_delta)) {
instance->decoder.parser_step = FaacSLHDecoderStepFoundPreambula;
if(instance->decoder.decode_count_bit ==
subghz_protocol_faac_slh_const.min_count_bit_for_found) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
break;
} else {
instance->decoder.te_last = duration;
instance->decoder.parser_step = FaacSLHDecoderStepCheckDuration;
}
} else {
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_faac_slh_const.te_short) <
subghz_protocol_faac_slh_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_long) <
subghz_protocol_faac_slh_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = FaacSLHDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_faac_slh_const.te_long) <
subghz_protocol_faac_slh_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_short) <
subghz_protocol_faac_slh_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = FaacSLHDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
} else {
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
break;
}
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manifacture_name Manufacturer name
*/
static void subghz_protocol_faac_slh_check_remote_controller(
SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name) {
uint32_t code_fix = instance->data >> 32;
uint32_t code_hop = instance->data & 0xFFFFFFFF;
uint32_t decrypt = 0;
uint64_t man;
// Stupid bypass for custom button, remake later
if(subghz_custom_btn_get_original() == 0) {
subghz_custom_btn_set_original(0xF);
}
subghz_custom_btn_set_max(1);
FURI_LOG_I("RMC", "CUSTOMBTN: %d\r", subghz_custom_btn_get());
uint8_t data_tmp = 0;
uint8_t data_prg[8];
data_prg[0] = (code_hop & 0xFF);
data_prg[1] = ((code_hop >> 8) & 0xFF);
data_prg[2] = ((code_hop >> 16) & 0xFF);
data_prg[3] = (code_hop >> 24);
data_prg[4] = (code_fix & 0xFF);
data_prg[5] = ((code_fix >> 8) & 0xFF);
data_prg[6] = ((code_fix >> 16) & 0xFF);
data_prg[7] = (code_fix >> 24);
if(((data_prg[7] == 0x52) && (data_prg[6] == 0x0F) && (data_prg[0] == 0x00))) {
instance->prg_mode = true;
// ProgMode ON
for(uint8_t i = data_prg[1] & 0xF; i != 0; i--) {
data_tmp = data_prg[2];
data_prg[2] = data_prg[2] >> 1 | (data_prg[3] & 1) << 7;
data_prg[3] = data_prg[3] >> 1 | (data_prg[4] & 1) << 7;
data_prg[4] = data_prg[4] >> 1 | (data_prg[5] & 1) << 7;
data_prg[5] = data_prg[5] >> 1 | (data_tmp & 1) << 7;
}
data_prg[2] ^= data_prg[1];
data_prg[3] ^= data_prg[1];
data_prg[4] ^= data_prg[1];
data_prg[5] ^= data_prg[1];
instance->seed = data_prg[5] << 24 | data_prg[4] << 16 | data_prg[3] << 8 | data_prg[2];
uint32_t dec_prg_1 = data_prg[7] << 24 | data_prg[6] << 16 | data_prg[5] << 8 |
data_prg[4];
uint32_t dec_prg_2 = data_prg[3] << 24 | data_prg[2] << 16 | data_prg[1] << 8 |
data_prg[0];
instance->data_2 = (uint64_t)dec_prg_1 << 32 | dec_prg_2;
instance->cnt = data_prg[1];
*manufacture_name = "FAAC_SLH";
return;
} else {
instance->serial = code_fix >> 4;
instance->btn = code_fix & 0xF;
instance->prg_mode = false;
}
for
M_EACH(manufacture_code, *subghz_keystore_get_data(keystore), SubGhzKeyArray_t) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_FAAC:
// FAAC Learning
man = subghz_protocol_keeloq_common_faac_learning(
instance->seed, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(code_hop, man);
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
break;
}
}
instance->cnt = decrypt & 0xFFFFF;
}
uint8_t subghz_protocol_decoder_faac_slh_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus subghz_protocol_decoder_faac_slh_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
// Reset seed leftover from previous decoded signal
instance->generic.seed = 0x0;
SubGhzProtocolStatus res =
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
uint8_t seed_data[sizeof(uint32_t)] = {0};
for(size_t i = 0; i < sizeof(uint32_t); i++) {
seed_data[sizeof(uint32_t) - i - 1] = (instance->generic.seed >> i * 8) & 0xFF;
}
if((res == SubGhzProtocolStatusOk) &&
!flipper_format_write_hex(flipper_format, "Seed", seed_data, sizeof(uint32_t))) {
FURI_LOG_E(TAG, "Unable to add Seed");
res = SubGhzProtocolStatusError;
}
instance->generic.seed = seed_data[0] << 24 | seed_data[1] << 16 | seed_data[2] << 8 |
seed_data[3];
subghz_protocol_faac_slh_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
return res;
}
SubGhzProtocolStatus
subghz_protocol_decoder_faac_slh_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
do {
if(SubGhzProtocolStatusOk !=
subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_faac_slh_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
uint8_t seed_data[sizeof(uint32_t)] = {0};
for(size_t i = 0; i < sizeof(uint32_t); i++) {
seed_data[sizeof(uint32_t) - i - 1] = (instance->generic.seed >> i * 8) & 0xFF;
}
if(!flipper_format_read_hex(flipper_format, "Seed", seed_data, sizeof(uint32_t))) {
FURI_LOG_E(TAG, "Missing Seed");
break;
}
bool allow_zero_seed;
if(flipper_format_read_bool(flipper_format, "AllowZeroSeed", &allow_zero_seed, 1)) {
instance->generic.allow_zero_seed = true;
} else {
instance->generic.allow_zero_seed = false;
}
instance->generic.seed = seed_data[0] << 24 | seed_data[1] << 16 | seed_data[2] << 8 |
seed_data[3];
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
res = SubGhzProtocolStatusOk;
} while(false);
return res;
}
void subghz_protocol_decoder_faac_slh_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
subghz_protocol_faac_slh_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
uint32_t code_fix = instance->generic.data >> 32;
uint32_t code_hop = instance->generic.data & 0xFFFFFFFF;
if(instance->generic.prg_mode == true) {
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Master Remote Prog Mode\r\n"
"Ke:%lX%08lX\r\n"
"Kd:%lX%08lX\r\n"
"Seed:%08lX mCnt:%02X",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data >> 32),
(uint32_t)instance->generic.data,
(uint32_t)(instance->generic.data_2 >> 32),
(uint32_t)instance->generic.data_2,
instance->generic.seed,
(uint8_t)(instance->generic.cnt & 0xFF));
} else if(instance->generic.allow_zero_seed == false) {
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%lX%08lX\r\n"
"Fix:%08lX\r\n"
"Hop:%08lX Btn:%X\r\n"
"Sn:%07lX Sd:Unknown",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data >> 32),
(uint32_t)instance->generic.data,
code_fix,
code_hop,
instance->generic.btn,
instance->generic.serial);
} else {
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%lX%08lX\r\n"
"Fix:%08lX Cnt:%05lX\r\n"
"Hop:%08lX Btn:%X\r\n"
"Sn:%07lX Sd:%08lX",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data >> 32),
(uint32_t)instance->generic.data,
code_fix,
instance->generic.cnt,
code_hop,
instance->generic.btn,
instance->generic.serial,
instance->generic.seed);
}
}