unleashed-firmware/applications/sd-card-test/sd-card-test.cpp
DrZlo13 714d732745
FL-78 Microsd test application (#230)
* variable cluster size, label info functions for targets
* app record
* init, mount, get label, get sn, get space
* enable exfat
* more stack for the stack god
* remove c app and add cpp app
* remove MULTI_PARTITION
* fix 4gb bug
* update app to new template lib, add animated waiting
* tiny buffer configuration
* write speed benchmark
* fnv1a hash library
* make DEFAULT_STACK_SIZE and MAX_TASK_COUNT defined per target
* fully functional sd card app
* build sd test app to release firmware
* cpp, not c
* light up red led if error
* flags for c++
* linking with g++
* suppres snprintf warning
* move format work area to heap

Co-authored-by: coreglitch <mail@s3f.ru>
2020-11-14 19:24:38 +03:00

846 lines
No EOL
24 KiB
C++

#include "app-template.h"
#include "fatfs/ff.h"
#include "stm32_adafruit_sd.h"
#include "fnv1a-hash.h"
// event enumeration type
typedef uint8_t event_t;
class SdTestState {
public:
// state data
static const uint8_t lines_count = 6;
const char* line[lines_count];
// state initializer
SdTestState() {
for(uint8_t i = 0; i < lines_count; i++) {
line[i] = "";
}
}
};
// events class
class SdTestEvent {
public:
// events enum
static const event_t EventTypeTick = 0;
static const event_t EventTypeKey = 1;
// payload
union {
InputEvent input;
} value;
// event type
event_t type;
};
// our app derived from base AppTemplate class
// with template variables <state, events>
class SdTest : public AppTemplate<SdTestState, SdTestEvent> {
public:
// vars
GpioPin* red_led_record;
GpioPin* green_led_record;
FATFS sd_fat_fs;
char sd_path[6];
const uint32_t benchmark_data_size = 4096;
uint8_t* benchmark_data;
// funcs
void run();
void render(CanvasApi* canvas);
template <class T> void set_text(std::initializer_list<T> list);
template <class T> void set_error(std::initializer_list<T> list);
const char* fatfs_error_desc(FRESULT res);
void wait_for_button(Input input_button);
bool ask(Input input_button_cancel, Input input_button_ok);
void blink_red();
void set_red();
void blink_green();
// "tests"
void detect_sd_card();
void show_warning();
void init_sd_card();
bool is_sd_card_formatted();
void ask_and_format_sd_card();
void mount_sd_card();
void format_sd_card();
void get_sd_card_info();
void prepare_benchmark_data();
void free_benchmark_data();
void write_benchmark();
uint32_t write_benchmark_internal(const uint32_t size, const uint32_t tcount);
void read_benchmark();
uint32_t read_benchmark_internal(const uint32_t size, const uint32_t count, FIL* file);
void hash_benchmark();
};
// start app
void SdTest::run() {
// create pin
GpioPin red_led = led_gpio[0];
GpioPin green_led = led_gpio[1];
// TODO open record
red_led_record = &red_led;
green_led_record = &green_led;
// configure pin
gpio_init(red_led_record, GpioModeOutputOpenDrain);
gpio_init(green_led_record, GpioModeOutputOpenDrain);
detect_sd_card();
show_warning();
init_sd_card();
if(!is_sd_card_formatted()) {
format_sd_card();
} else {
ask_and_format_sd_card();
}
mount_sd_card();
get_sd_card_info();
prepare_benchmark_data();
write_benchmark();
read_benchmark();
hash_benchmark();
free_benchmark_data();
set_text({
"test complete",
"",
"",
"",
"",
"press BACK to exit",
});
wait_for_button(InputBack);
exit();
}
// detect sd card insertion
void SdTest::detect_sd_card() {
const uint8_t str_buffer_size = 40;
const uint8_t dots_animation_size = 4;
char str_buffer[str_buffer_size];
const char dots[dots_animation_size][4] = {"", ".", "..", "..."};
uint8_t i = 0;
// detect sd card pin
while(!hal_gpio_read_sd_detect()) {
delay(100);
snprintf(str_buffer, str_buffer_size, "Waiting%s", dots[i]);
set_text({static_cast<const char*>(str_buffer), "Please insert sd card"});
if(i < (dots_animation_size - 1)) {
i++;
} else {
i = 0;
}
}
blink_green();
}
// show warning about test
void SdTest::show_warning() {
set_text(
{"!!Warning!!",
"during the tests",
"card may be formatted",
"or data on card may be lost",
"",
"press UP DOWN OK to continue"});
wait_for_button(InputUp);
wait_for_button(InputDown);
wait_for_button(InputOk);
}
// init low level driver
void SdTest::init_sd_card() {
uint8_t bsp_result = BSP_SD_Init();
// BSP_SD_OK = 0
if(bsp_result) {
set_error({"SD card init error", "BSP error"});
}
blink_green();
}
// test, if sd card need to be formatted
bool SdTest::is_sd_card_formatted() {
FRESULT result;
set_text({"checking if card needs to be formatted"});
result = f_mount(&sd_fat_fs, sd_path, 1);
if(result == FR_NO_FILESYSTEM) {
return false;
} else {
return true;
}
}
void SdTest::ask_and_format_sd_card() {
set_text({"Want to format sd card?", "", "", "", "", "LEFT to CANCEL | RIGHT to OK"});
if(ask(InputLeft, InputRight)) {
format_sd_card();
}
}
// mount sd card
void SdTest::mount_sd_card() {
FRESULT result;
set_text({"mounting sdcard"});
result = f_mount(&sd_fat_fs, sd_path, 1);
if(result) {
set_error({"SD card mount error", fatfs_error_desc(result)});
}
blink_green();
}
// format sd card
void SdTest::format_sd_card() {
FRESULT result;
BYTE* work_area;
set_text({"formatting sdcard", "procedure can be lengthy", "please wait"});
delay(100);
work_area = static_cast<BYTE*>(malloc(_MAX_SS));
if(work_area == NULL) {
set_error({"SD card format error", "cannot allocate memory"});
}
result = f_mkfs(sd_path, (FM_FAT | FM_FAT32 | FM_EXFAT), 0, work_area, _MAX_SS);
free(work_area);
if(result) {
set_error({"SD card format error", fatfs_error_desc(result)});
}
result = f_setlabel("Flipper SD");
if(result) {
set_error({"SD card set label error", fatfs_error_desc(result)});
}
blink_green();
}
// get info about sd card, label, sn
// sector, cluster, total and free size
void SdTest::get_sd_card_info() {
const uint8_t str_buffer_size = 26;
char str_buffer[4][str_buffer_size];
char volume_label[128];
DWORD serial_num;
FRESULT result;
FATFS* fs;
DWORD free_clusters, free_sectors, total_sectors;
// suppress "'%s' directive output may be truncated" warning about snprintf
int __attribute__((unused)) snprintf_count = 0;
// get label and s/n
result = f_getlabel(sd_path, volume_label, &serial_num);
if(result) set_error({"f_getlabel error", fatfs_error_desc(result)});
snprintf_count = snprintf(str_buffer[0], str_buffer_size, "Label: %s", volume_label);
snprintf(str_buffer[1], str_buffer_size, "S/N: %lu", serial_num);
set_text(
{static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
"",
"",
"",
"press OK to continue"});
blink_green();
wait_for_button(InputOk);
// get total and free space
result = f_getfree(sd_path, &free_clusters, &fs);
if(result) set_error({"f_getfree error", fatfs_error_desc(result)});
total_sectors = (fs->n_fatent - 2) * fs->csize;
free_sectors = free_clusters * fs->csize;
snprintf(str_buffer[0], str_buffer_size, "Cluster: %d sectors", fs->csize);
snprintf(str_buffer[1], str_buffer_size, "Sector: %d bytes", fs->ssize);
snprintf(str_buffer[2], str_buffer_size, "%lu KB total", total_sectors / 1024 * fs->ssize);
snprintf(str_buffer[3], str_buffer_size, "%lu KB free", free_sectors / 1024 * fs->ssize);
set_text(
{static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
static_cast<const char*>(str_buffer[2]),
static_cast<const char*>(str_buffer[3]),
"",
"press OK to continue"});
blink_green();
wait_for_button(InputOk);
}
// prepare benchmark data (allocate data in ram)
void SdTest::prepare_benchmark_data() {
set_text({"preparing benchmark data"});
benchmark_data = static_cast<uint8_t*>(malloc(benchmark_data_size));
if(benchmark_data == NULL) {
set_error({"cannot allocate buffer", "for benchmark data"});
}
for(size_t i = 0; i < benchmark_data_size; i++) {
benchmark_data[i] = static_cast<uint8_t>(i);
}
set_text({"benchmark data prepared"});
}
void SdTest::free_benchmark_data() {
free(benchmark_data);
}
// write speed test
void SdTest::write_benchmark() {
const uint32_t b1_size = 1;
const uint32_t b8_size = 8;
const uint32_t b32_size = 32;
const uint32_t b256_size = 256;
const uint32_t b4096_size = 4096;
const uint32_t benchmark_data_size = 16384 * 4;
uint32_t benchmark_bps = 0;
const uint8_t str_buffer_size = 32;
char str_buffer[6][str_buffer_size] = {"", "", "", "", "", ""};
auto string_list = {
static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
static_cast<const char*>(str_buffer[2]),
static_cast<const char*>(str_buffer[3]),
static_cast<const char*>(str_buffer[4]),
static_cast<const char*>(str_buffer[5])};
set_text({"write speed test", "procedure can be lengthy", "please wait"});
delay(100);
// 1b test
benchmark_bps = write_benchmark_internal(b1_size, benchmark_data_size / b1_size);
snprintf(str_buffer[0], str_buffer_size, "1-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 8b test
benchmark_bps = write_benchmark_internal(b8_size, benchmark_data_size / b8_size);
snprintf(str_buffer[1], str_buffer_size, "8-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 32b test
benchmark_bps = write_benchmark_internal(b32_size, benchmark_data_size / b32_size);
snprintf(str_buffer[2], str_buffer_size, "32-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 256b test
benchmark_bps = write_benchmark_internal(b256_size, benchmark_data_size / b256_size);
snprintf(str_buffer[3], str_buffer_size, "256-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 4096b test
benchmark_bps = write_benchmark_internal(b4096_size, benchmark_data_size / b4096_size);
snprintf(str_buffer[4], str_buffer_size, "4096-byte: %lu bps", benchmark_bps);
snprintf(str_buffer[5], str_buffer_size, "press OK to continue");
set_text(string_list);
blink_green();
wait_for_button(InputOk);
}
uint32_t SdTest::write_benchmark_internal(const uint32_t size, const uint32_t count) {
uint32_t start_tick, stop_tick, benchmark_bps, benchmark_time, bytes_written;
FRESULT result;
FIL file;
const uint8_t str_buffer_size = 32;
char str_buffer[str_buffer_size];
result = f_open(&file, "write.test", FA_WRITE | FA_OPEN_ALWAYS);
if(result) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte write test", size);
set_error({"cannot open file ", static_cast<const char*>(str_buffer)});
}
start_tick = osKernelGetTickCount();
for(size_t i = 0; i < count; i++) {
result = f_write(&file, benchmark_data, size, reinterpret_cast<UINT*>(&bytes_written));
if(bytes_written != size || result) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte write test", size);
set_error({"cannot write to file ", static_cast<const char*>(str_buffer)});
}
}
stop_tick = osKernelGetTickCount();
result = f_close(&file);
if(result) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte write test", size);
set_error({"cannot close file ", static_cast<const char*>(str_buffer)});
}
benchmark_time = stop_tick - start_tick;
benchmark_bps = (count * size) * osKernelGetTickFreq() / benchmark_time;
return benchmark_bps;
}
// read speed test
void SdTest::read_benchmark() {
const uint32_t benchmark_data_size = 16384 * 8;
uint32_t bytes_written;
uint32_t benchmark_bps = 0;
const uint8_t str_buffer_size = 32;
char str_buffer[6][str_buffer_size] = {"", "", "", "", "", ""};
auto string_list = {
static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
static_cast<const char*>(str_buffer[2]),
static_cast<const char*>(str_buffer[3]),
static_cast<const char*>(str_buffer[4]),
static_cast<const char*>(str_buffer[5])};
FRESULT result;
FIL file;
const uint32_t b1_size = 1;
const uint32_t b8_size = 8;
const uint32_t b32_size = 32;
const uint32_t b256_size = 256;
const uint32_t b4096_size = 4096;
// prepare data for read test
set_text({"prepare data", "for read speed test", "procedure can be lengthy", "please wait"});
delay(100);
result = f_open(&file, "read.test", FA_WRITE | FA_OPEN_ALWAYS);
if(result) {
set_error({"cannot open file ", "in prepare read"});
}
for(size_t i = 0; i < benchmark_data_size / b4096_size; i++) {
result =
f_write(&file, benchmark_data, b4096_size, reinterpret_cast<UINT*>(&bytes_written));
if(bytes_written != b4096_size || result) {
set_error({"cannot write to file ", "in prepare read"});
}
}
result = f_close(&file);
if(result) {
set_error({"cannot close file ", "in prepare read"});
}
// test start
set_text({"read speed test", "procedure can be lengthy", "please wait"});
delay(100);
// open file
result = f_open(&file, "read.test", FA_READ | FA_OPEN_EXISTING);
if(result) {
set_error({"cannot open file ", "in read benchmark"});
}
// 1b test
benchmark_bps = read_benchmark_internal(b1_size, benchmark_data_size / b1_size, &file);
snprintf(str_buffer[0], str_buffer_size, "1-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 8b test
benchmark_bps = read_benchmark_internal(b8_size, benchmark_data_size / b8_size, &file);
snprintf(str_buffer[1], str_buffer_size, "8-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 32b test
benchmark_bps = read_benchmark_internal(b32_size, benchmark_data_size / b32_size, &file);
snprintf(str_buffer[2], str_buffer_size, "32-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 256b test
benchmark_bps = read_benchmark_internal(b256_size, benchmark_data_size / b256_size, &file);
snprintf(str_buffer[3], str_buffer_size, "256-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 4096b test
benchmark_bps = read_benchmark_internal(b4096_size, benchmark_data_size / b4096_size, &file);
snprintf(str_buffer[4], str_buffer_size, "4096-byte: %lu bps", benchmark_bps);
snprintf(str_buffer[5], str_buffer_size, "press OK to continue");
set_text(string_list);
// close file
result = f_close(&file);
if(result) {
set_error({"cannot close file ", "in read test"});
}
blink_green();
wait_for_button(InputOk);
}
uint32_t SdTest::read_benchmark_internal(const uint32_t size, const uint32_t count, FIL* file) {
uint32_t start_tick, stop_tick, benchmark_bps, benchmark_time, bytes_readed;
FRESULT result;
const uint8_t str_buffer_size = 32;
char str_buffer[str_buffer_size];
uint8_t* read_buffer;
read_buffer = static_cast<uint8_t*>(malloc(size));
if(read_buffer == NULL) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte read test", size);
set_error({"cannot allocate memory", static_cast<const char*>(str_buffer)});
}
f_rewind(file);
start_tick = osKernelGetTickCount();
for(size_t i = 0; i < count; i++) {
result = f_read(file, read_buffer, size, reinterpret_cast<UINT*>(&bytes_readed));
if(bytes_readed != size || result) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte read test", size);
set_error({"cannot read from file ", static_cast<const char*>(str_buffer)});
}
}
stop_tick = osKernelGetTickCount();
free(read_buffer);
benchmark_time = stop_tick - start_tick;
benchmark_bps = (count * size) * osKernelGetTickFreq() / benchmark_time;
return benchmark_bps;
}
// hash benchmark, store data to sd with known hash
// then read, calculate hash and compare both hashes
void SdTest::hash_benchmark() {
uint32_t mcu_data_hash = FNV_1A_INIT;
uint32_t sdcard_data_hash = FNV_1A_INIT;
uint8_t* read_buffer;
uint32_t bytes_readed;
uint32_t bytes_written;
const uint8_t str_buffer_size = 32;
char str_buffer[3][str_buffer_size] = {"", "", ""};
FRESULT result;
FIL file;
const uint32_t b4096_size = 4096;
const uint32_t benchmark_count = 20;
// prepare data for hash test
set_text({"prepare data", "for hash test"});
delay(100);
// write data to test file and calculate hash
result = f_open(&file, "hash.test", FA_WRITE | FA_OPEN_ALWAYS);
if(result) {
set_error({"cannot open file ", "in prepare hash"});
}
for(uint32_t i = 0; i < benchmark_count; i++) {
mcu_data_hash = fnv1a_buffer_hash(benchmark_data, b4096_size, mcu_data_hash);
result =
f_write(&file, benchmark_data, b4096_size, reinterpret_cast<UINT*>(&bytes_written));
if(bytes_written != b4096_size || result) {
set_error({"cannot write to file ", "in prepare hash"});
}
snprintf(str_buffer[0], str_buffer_size, "writing %lu of %lu x 4k", i, benchmark_count);
set_text({"prepare data", "for hash test", static_cast<const char*>(str_buffer[0])});
delay(100);
}
result = f_close(&file);
if(result) {
set_error({"cannot close file ", "in prepare hash"});
}
// show hash of data located in mcu memory
snprintf(str_buffer[0], str_buffer_size, "hash in mcu 0x%lx", mcu_data_hash);
set_text({str_buffer[0]});
delay(100);
// read data from sd card and calculate hash
read_buffer = static_cast<uint8_t*>(malloc(b4096_size));
if(read_buffer == NULL) {
set_error({"cannot allocate memory", "in hash test"});
}
result = f_open(&file, "hash.test", FA_READ | FA_OPEN_EXISTING);
if(result) {
set_error({"cannot open file ", "in hash test"});
}
for(uint32_t i = 0; i < benchmark_count; i++) {
result = f_read(&file, read_buffer, b4096_size, reinterpret_cast<UINT*>(&bytes_readed));
sdcard_data_hash = fnv1a_buffer_hash(read_buffer, b4096_size, sdcard_data_hash);
if(bytes_readed != b4096_size || result) {
set_error({"cannot read from file ", "in hash test"});
}
snprintf(str_buffer[1], str_buffer_size, "reading %lu of %lu x 4k", i, benchmark_count);
set_text({str_buffer[0], str_buffer[1]});
delay(100);
}
result = f_close(&file);
if(result) {
set_error({"cannot close file ", "in hash test"});
}
free(read_buffer);
snprintf(str_buffer[1], str_buffer_size, "hash in sdcard 0x%lx", sdcard_data_hash);
if(mcu_data_hash == sdcard_data_hash) {
snprintf(str_buffer[2], str_buffer_size, "hashes are equal, press OK");
set_text(
{static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
"",
"",
"",
static_cast<const char*>(str_buffer[2])});
} else {
snprintf(str_buffer[2], str_buffer_size, "hash error, press BACK to exit");
set_error(
{static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
"",
"",
"",
static_cast<const char*>(str_buffer[2])});
}
blink_green();
wait_for_button(InputOk);
}
// wait for button press
void SdTest::wait_for_button(Input input_button) {
SdTestEvent event;
osMessageQueueReset(event_queue);
while(1) {
osStatus_t result = osMessageQueueGet(event_queue, &event, NULL, osWaitForever);
if(result == osOK && event.type == SdTestEvent::EventTypeKey) {
if(event.value.input.state == true) {
if(event.value.input.input == InputBack) {
exit();
} else {
if(event.value.input.input == input_button) {
blink_green();
break;
} else {
blink_red();
}
}
}
}
}
osMessageQueueReset(event_queue);
}
// ask user to proceed or cancel
bool SdTest::ask(Input input_button_cancel, Input input_button_ok) {
bool return_result;
SdTestEvent event;
osMessageQueueReset(event_queue);
while(1) {
osStatus_t result = osMessageQueueGet(event_queue, &event, NULL, osWaitForever);
if(result == osOK && event.type == SdTestEvent::EventTypeKey) {
if(event.value.input.state == true) {
if(event.value.input.input == InputBack) {
exit();
} else {
if(event.value.input.input == input_button_ok) {
blink_green();
return_result = true;
break;
} else if(event.value.input.input == input_button_cancel) {
blink_green();
return_result = false;
break;
} else {
blink_red();
}
}
}
}
}
osMessageQueueReset(event_queue);
return return_result;
}
// blink red led
void SdTest::blink_red() {
gpio_write(red_led_record, 0);
delay(50);
gpio_write(red_led_record, 1);
}
// light up red led
void SdTest::set_red() {
gpio_write(red_led_record, 0);
}
// blink green led
void SdTest::blink_green() {
gpio_write(green_led_record, 0);
delay(50);
gpio_write(green_led_record, 1);
}
// FatFs errors descriptions
const char* SdTest::fatfs_error_desc(FRESULT res) {
switch(res) {
case FR_OK:
return "ok";
break;
case FR_DISK_ERR:
return "low level error";
break;
case FR_INT_ERR:
return "internal error";
break;
case FR_NOT_READY:
return "not ready";
break;
case FR_NO_FILE:
return "no file";
break;
case FR_NO_PATH:
return "no path";
break;
case FR_INVALID_NAME:
return "invalid name";
break;
case FR_DENIED:
return "denied";
break;
case FR_EXIST:
return "already exist";
break;
case FR_INVALID_OBJECT:
return "invalid file/dir obj";
break;
case FR_WRITE_PROTECTED:
return "write protected";
break;
case FR_INVALID_DRIVE:
return "invalid drive";
break;
case FR_NOT_ENABLED:
return "no work area in volume";
break;
case FR_NO_FILESYSTEM:
return "no valid FS volume";
break;
case FR_MKFS_ABORTED:
return "aborted, any problem";
break;
case FR_TIMEOUT:
return "timeout";
break;
case FR_LOCKED:
return "file locked";
break;
case FR_NOT_ENOUGH_CORE:
return "not enough core memory";
break;
case FR_TOO_MANY_OPEN_FILES:
return "too many open files";
break;
case FR_INVALID_PARAMETER:
return "invalid parameter";
break;
default:
return "unknown error";
break;
}
}
// set text, but with infinite loop
template <class T> void SdTest::set_error(std::initializer_list<T> list) {
set_text(list);
set_red();
wait_for_button(InputBack);
exit();
}
// set text, sort of variadic function
template <class T> void SdTest::set_text(std::initializer_list<T> list) {
uint8_t line_position = 0;
acquire_state();
printf("------------------------\n");
// set line strings from args
for(auto element : list) {
state.line[line_position] = element;
printf("%s\n", element);
line_position++;
if(line_position == state.lines_count) break;
}
// set empty lines
for(; line_position < state.lines_count; line_position++) {
state.line[line_position] = "";
printf("\n");
}
printf("------------------------\n");
release_state();
}
// render app
void SdTest::render(CanvasApi* canvas) {
canvas->set_color(canvas, ColorBlack);
canvas->set_font(canvas, FontSecondary);
for(uint8_t i = 0; i < state.lines_count; i++) {
canvas->draw_str(canvas, 0, (i + 1) * 10, state.line[i]);
}
}
// app enter function
extern "C" void sd_card_test(void* p) {
SdTest* app = new SdTest();
app->run();
}