unleashed-firmware/lib/subghz/protocols/keeloq.c
2023-05-13 23:16:28 +03:00

1403 lines
58 KiB
C

#include "keeloq.h"
#include "keeloq_common.h"
#include "../subghz_keystore.h"
#include <m-array.h>
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#include "../blocks/custom_btn.h"
#define TAG "SubGhzProtocolKeeloq"
#define KEELOQ_PROG_MODE_OFF (0U)
#define KEELOQ_PROG_MODE_BFT (1U)
#define KEELOQ_PROG_MODE_APRIMATIC (2U)
static const SubGhzBlockConst subghz_protocol_keeloq_const = {
.te_short = 400,
.te_long = 800,
.te_delta = 140,
.min_count_bit_for_found = 64,
};
struct SubGhzProtocolDecoderKeeloq {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
uint16_t header_count;
SubGhzKeystore* keystore;
const char* manufacture_name;
FuriString* manufacture_from_file;
};
struct SubGhzProtocolEncoderKeeloq {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
SubGhzKeystore* keystore;
const char* manufacture_name;
FuriString* manufacture_from_file;
};
typedef enum {
KeeloqDecoderStepReset = 0,
KeeloqDecoderStepCheckPreambula,
KeeloqDecoderStepSaveDuration,
KeeloqDecoderStepCheckDuration,
} KeeloqDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_keeloq_decoder = {
.alloc = subghz_protocol_decoder_keeloq_alloc,
.free = subghz_protocol_decoder_keeloq_free,
.feed = subghz_protocol_decoder_keeloq_feed,
.reset = subghz_protocol_decoder_keeloq_reset,
.get_hash_data = subghz_protocol_decoder_keeloq_get_hash_data,
.serialize = subghz_protocol_decoder_keeloq_serialize,
.deserialize = subghz_protocol_decoder_keeloq_deserialize,
.get_string = subghz_protocol_decoder_keeloq_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_keeloq_encoder = {
.alloc = subghz_protocol_encoder_keeloq_alloc,
.free = subghz_protocol_encoder_keeloq_free,
.deserialize = subghz_protocol_encoder_keeloq_deserialize,
.stop = subghz_protocol_encoder_keeloq_stop,
.yield = subghz_protocol_encoder_keeloq_yield,
};
const SubGhzProtocol subghz_protocol_keeloq = {
.name = SUBGHZ_PROTOCOL_KEELOQ_NAME,
.type = SubGhzProtocolTypeDynamic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_315 |
SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load |
SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_keeloq_decoder,
.encoder = &subghz_protocol_keeloq_encoder,
};
static const char* mfname;
static uint8_t kl_type;
static uint8_t klq_prog_mode;
static uint16_t temp_counter;
void keeloq_reset_original_btn() {
subghz_custom_btns_reset();
temp_counter = 0;
klq_prog_mode = KEELOQ_PROG_MODE_OFF;
}
void keeloq_reset_mfname() {
mfname = "";
}
void keeloq_reset_kl_type() {
kl_type = 0;
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manufacture_name
*/
static void subghz_protocol_keeloq_check_remote_controller(
SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name);
void* subghz_protocol_encoder_keeloq_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolEncoderKeeloq* instance = malloc(sizeof(SubGhzProtocolEncoderKeeloq));
instance->base.protocol = &subghz_protocol_keeloq;
instance->generic.protocol_name = instance->base.protocol->name;
instance->keystore = subghz_environment_get_keystore(environment);
instance->encoder.repeat = 100;
instance->encoder.size_upload = 256;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
instance->manufacture_from_file = furi_string_alloc();
return instance;
}
void subghz_protocol_encoder_keeloq_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderKeeloq* instance = context;
furi_string_free(instance->manufacture_from_file);
free(instance->encoder.upload);
free(instance);
}
/**
* Key generation from simple data
* @param instance Pointer to a SubGhzProtocolEncoderKeeloq* instance
* @param btn Button number, 4 bit
* @param counter_up increasing the counter if the value is true
*/
static bool subghz_protocol_keeloq_gen_data(
SubGhzProtocolEncoderKeeloq* instance,
uint8_t btn,
bool counter_up) {
uint32_t fix = (uint32_t)btn << 28 | instance->generic.serial;
uint32_t hop = 0;
uint64_t man = 0;
uint64_t code_found_reverse;
int res = 0;
if(instance->manufacture_name == 0x0) {
instance->manufacture_name = "";
}
// programming mode on / off conditions
if(strcmp(instance->manufacture_name, "BFT") == 0) {
// BFT programming mode on / off conditions
if(btn == 0xF) {
klq_prog_mode = KEELOQ_PROG_MODE_BFT;
} else if(klq_prog_mode == KEELOQ_PROG_MODE_BFT) {
klq_prog_mode = KEELOQ_PROG_MODE_OFF;
}
} else if(strcmp(instance->manufacture_name, "Aprimatic") == 0) {
// Aprimatic programming mode on / off conditions
if(btn == 0xF) {
klq_prog_mode = KEELOQ_PROG_MODE_APRIMATIC;
} else if(klq_prog_mode == KEELOQ_PROG_MODE_APRIMATIC) {
klq_prog_mode = KEELOQ_PROG_MODE_OFF;
}
}
// If we using BFT programming mode we will trasmit its seed in hop part like original remote
if(klq_prog_mode == KEELOQ_PROG_MODE_BFT) {
hop = instance->generic.seed;
} else if(klq_prog_mode == KEELOQ_PROG_MODE_APRIMATIC) {
// If we using Aprimatic programming mode we will trasmit some strange looking hop value, why? cuz manufacturer did it this way :)
hop = 0x1A2B3C4D;
}
if(counter_up && klq_prog_mode == KEELOQ_PROG_MODE_OFF) {
if(instance->generic.cnt < 0xFFFF) {
if((instance->generic.cnt + furi_hal_subghz_get_rolling_counter_mult()) >= 0xFFFF) {
instance->generic.cnt = 0;
} else {
instance->generic.cnt += furi_hal_subghz_get_rolling_counter_mult();
}
} else if(instance->generic.cnt >= 0xFFFF) {
instance->generic.cnt = 0;
}
}
if(klq_prog_mode == KEELOQ_PROG_MODE_OFF) {
// Protocols that do not use encryption
if(strcmp(instance->manufacture_name, "Unknown") == 0) {
code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
hop = code_found_reverse & 0x00000000ffffffff;
} else if(strcmp(instance->manufacture_name, "AN-Motors") == 0) {
hop = (instance->generic.cnt & 0xFF) << 24 | (instance->generic.cnt & 0xFF) << 16 |
(btn & 0xF) << 12 | 0x404;
} else if(strcmp(instance->manufacture_name, "HCS101") == 0) {
hop = instance->generic.cnt << 16 | (btn & 0xF) << 12 | 0x000;
} else {
// Protocols that use encryption
uint32_t decrypt = (uint32_t)btn << 28 |
(instance->generic.serial & 0x3FF)
<< 16 | //ToDo in some protocols the discriminator is 0
instance->generic.cnt;
if(strcmp(instance->manufacture_name, "Aprimatic") == 0) {
// Aprimatic uses 12bit serial number + 2bit APR1 "parity" bit in front of it replacing first 2 bits of serial
// Thats in theory! We need to check if this is true for all Aprimatic remotes but we got only 3 recordings to test
// For now lets assume that this is true for all Aprimatic remotes, if not we will need to add some more code here
uint32_t apri_serial = instance->generic.serial;
uint8_t apr1 = 0;
for(uint16_t i = 1; i != 0b10000000000; i <<= 1) {
if(apri_serial & i) apr1++;
}
apri_serial &= 0b00001111111111;
if(apr1 % 2 == 0) {
apri_serial |= 0b110000000000;
}
decrypt = btn << 28 | (apri_serial & 0xFFF) << 16 | instance->generic.cnt;
} else if(
(strcmp(instance->manufacture_name, "DTM_Neo") == 0) ||
(strcmp(instance->manufacture_name, "FAAC_RC,XT") == 0) ||
(strcmp(instance->manufacture_name, "Mutanco_Mutancode") == 0) ||
(strcmp(instance->manufacture_name, "Stilmatic") == 0) ||
(strcmp(instance->manufacture_name, "Came_Space") == 0)) {
// DTM Neo, Came_Space uses 12bit serial -> simple learning
// FAAC_RC,XT , Mutanco_Mutancode, Stilmatic(Schellenberg) 12bit serial -> normal learning
decrypt = btn << 28 | (instance->generic.serial & 0xFFF) << 16 |
instance->generic.cnt;
} else if(
(strcmp(instance->manufacture_name, "NICE_Smilo") == 0) ||
(strcmp(instance->manufacture_name, "NICE_MHOUSE") == 0) ||
(strcmp(instance->manufacture_name, "JCM_Tech") == 0) ||
(strcmp(instance->manufacture_name, "Normstahl") == 0)) {
// Nice Smilo, MHouse, JCM, Normstahl -> 8bit serial - simple learning
decrypt = btn << 28 | (instance->generic.serial & 0xFF) << 16 |
instance->generic.cnt;
} else if(strcmp(instance->manufacture_name, "Beninca") == 0) {
decrypt = btn << 28 | (0x000) << 16 | instance->generic.cnt;
// Beninca / Allmatic -> no serial - simple XOR
}
for
M_EACH(
manufacture_code,
*subghz_keystore_get_data(instance->keystore),
SubGhzKeyArray_t) {
res = strcmp(
furi_string_get_cstr(manufacture_code->name), instance->manufacture_name);
if(res == 0) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
hop = subghz_protocol_keeloq_common_encrypt(
decrypt, manufacture_code->key);
break;
case KEELOQ_LEARNING_NORMAL:
//Simple Learning
man = subghz_protocol_keeloq_common_normal_learning(
fix, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
break;
case KEELOQ_LEARNING_SECURE:
//Secure Learning
man = subghz_protocol_keeloq_common_secure_learning(
fix, instance->generic.seed, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
break;
case KEELOQ_LEARNING_MAGIC_XOR_TYPE_1:
//Magic XOR type-1 Learning
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(
instance->generic.serial, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
break;
case KEELOQ_LEARNING_MAGIC_SERIAL_TYPE_1:
//Magic Serial Type 1 learning
man = subghz_protocol_keeloq_common_magic_serial_type1_learning(
fix, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
break;
case KEELOQ_LEARNING_UNKNOWN:
if(kl_type == 1) {
hop = subghz_protocol_keeloq_common_encrypt(
decrypt, manufacture_code->key);
}
if(kl_type == 2) {
man = subghz_protocol_keeloq_common_normal_learning(
fix, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
}
if(kl_type == 3) {
man = subghz_protocol_keeloq_common_secure_learning(
fix, instance->generic.seed, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
}
if(kl_type == 4) {
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(
instance->generic.serial, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
}
break;
}
break;
}
}
}
}
if(hop) {
uint64_t yek = (uint64_t)fix << 32 | hop;
instance->generic.data =
subghz_protocol_blocks_reverse_key(yek, instance->generic.data_count_bit);
} // What should happen if seed = 0 in bft programming mode
return true; // Always return true
}
bool subghz_protocol_keeloq_create_data(
void* context,
FlipperFormat* flipper_format,
uint32_t serial,
uint8_t btn,
uint16_t cnt,
const char* manufacture_name,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolEncoderKeeloq* instance = context;
instance->generic.serial = serial;
instance->generic.cnt = cnt;
instance->manufacture_name = manufacture_name;
instance->generic.data_count_bit = 64;
bool res = subghz_protocol_keeloq_gen_data(instance, btn, false);
if(res) {
return SubGhzProtocolStatusOk ==
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
return res;
}
bool subghz_protocol_keeloq_bft_create_data(
void* context,
FlipperFormat* flipper_format,
uint32_t serial,
uint8_t btn,
uint16_t cnt,
uint32_t seed,
const char* manufacture_name,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolEncoderKeeloq* instance = context;
instance->generic.serial = serial;
instance->generic.btn = btn;
instance->generic.cnt = cnt;
instance->generic.seed = seed;
instance->manufacture_name = manufacture_name;
instance->generic.data_count_bit = 64;
// roguuemaster don't steal.!!!!
bool res = subghz_protocol_keeloq_gen_data(instance, btn, false);
if(res) {
return SubGhzProtocolStatusOk ==
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
return res;
}
/**
* Defines the button value for the current btn_id
* Basic set | 0x1 | 0x2 | 0x4 | 0x8 | 0xA or Special Learning Code |
* @param last_btn_code Candidate for the last button
* @return Button code
*/
static uint8_t subghz_protocol_keeloq_get_btn_code(uint8_t last_btn_code);
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderKeeloq instance
* @return true On success
*/
static bool
subghz_protocol_encoder_keeloq_get_upload(SubGhzProtocolEncoderKeeloq* instance, uint8_t btn) {
furi_assert(instance);
// Save original button
if(subghz_custom_btn_get_original() == 0) {
subghz_custom_btn_set_original(btn);
}
if(instance->manufacture_name == 0x0) {
instance->manufacture_name = "";
}
if(klq_prog_mode == KEELOQ_PROG_MODE_BFT) {
instance->manufacture_name = "BFT";
} else if(klq_prog_mode == KEELOQ_PROG_MODE_APRIMATIC) {
instance->manufacture_name = "Aprimatic";
}
uint8_t klq_last_custom_btn = 0xA;
if((strcmp(instance->manufacture_name, "BFT") == 0) ||
(strcmp(instance->manufacture_name, "Aprimatic") == 0)) {
klq_last_custom_btn = 0xF;
}
btn = subghz_protocol_keeloq_get_btn_code(klq_last_custom_btn);
// Generate new key
if(subghz_protocol_keeloq_gen_data(instance, btn, true)) {
// OK
} else {
return false;
}
size_t index = 0;
size_t size_upload = 11 * 2 + 2 + (instance->generic.data_count_bit * 2) + 4;
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send header
for(uint8_t i = 11; i > 0; i--) {
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short);
}
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short * 10);
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_long);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short);
}
}
// +send 2 status bit
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_long);
// send end
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short * 40);
return true;
}
SubGhzProtocolStatus
subghz_protocol_encoder_keeloq_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderKeeloq* instance = context;
SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
do {
ret = subghz_block_generic_deserialize_check_count_bit(
&instance->generic,
flipper_format,
subghz_protocol_keeloq_const.min_count_bit_for_found);
if(ret != SubGhzProtocolStatusOk) {
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_keeloq_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
uint8_t seed_data[sizeof(uint32_t)] = {0};
for(size_t i = 0; i < sizeof(uint32_t); i++) {
seed_data[sizeof(uint32_t) - i - 1] = (instance->generic.seed >> i * 8) & 0xFF;
}
if(!flipper_format_read_hex(flipper_format, "Seed", seed_data, sizeof(uint32_t))) {
FURI_LOG_D(TAG, "ENCODER: Missing Seed");
}
instance->generic.seed = seed_data[0] << 24 | seed_data[1] << 16 | seed_data[2] << 8 |
seed_data[3];
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
// Read manufacturer from file
if(flipper_format_read_string(
flipper_format, "Manufacture", instance->manufacture_from_file)) {
instance->manufacture_name = furi_string_get_cstr(instance->manufacture_from_file);
mfname = furi_string_get_cstr(instance->manufacture_from_file);
} else {
FURI_LOG_D(TAG, "ENCODER: Missing Manufacture");
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
subghz_protocol_keeloq_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_keeloq_get_upload(instance, instance->generic.btn)) {
ret = SubGhzProtocolStatusErrorEncoderGetUpload;
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
ret = SubGhzProtocolStatusErrorParserOthers;
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> (i * 8)) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
ret = SubGhzProtocolStatusErrorParserKey;
break;
}
instance->encoder.is_running = true;
} while(false);
return ret;
}
void subghz_protocol_encoder_keeloq_stop(void* context) {
SubGhzProtocolEncoderKeeloq* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_keeloq_yield(void* context) {
SubGhzProtocolEncoderKeeloq* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_keeloq_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolDecoderKeeloq* instance = malloc(sizeof(SubGhzProtocolDecoderKeeloq));
instance->base.protocol = &subghz_protocol_keeloq;
instance->generic.protocol_name = instance->base.protocol->name;
instance->keystore = subghz_environment_get_keystore(environment);
instance->manufacture_from_file = furi_string_alloc();
klq_prog_mode = KEELOQ_PROG_MODE_OFF;
return instance;
}
void subghz_protocol_decoder_keeloq_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
furi_string_free(instance->manufacture_from_file);
free(instance);
}
void subghz_protocol_decoder_keeloq_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
instance->decoder.parser_step = KeeloqDecoderStepReset;
mfname = "";
kl_type = 0;
}
void subghz_protocol_decoder_keeloq_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
switch(instance->decoder.parser_step) {
case KeeloqDecoderStepReset:
if((level) && DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short) <
subghz_protocol_keeloq_const.te_delta) {
instance->decoder.parser_step = KeeloqDecoderStepCheckPreambula;
instance->header_count++;
}
break;
case KeeloqDecoderStepCheckPreambula:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short) <
subghz_protocol_keeloq_const.te_delta)) {
instance->decoder.parser_step = KeeloqDecoderStepReset;
break;
}
if((instance->header_count > 2) &&
(DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short * 10) <
subghz_protocol_keeloq_const.te_delta * 10)) {
// Found header
instance->decoder.parser_step = KeeloqDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.parser_step = KeeloqDecoderStepReset;
instance->header_count = 0;
}
break;
case KeeloqDecoderStepSaveDuration:
if(level) {
instance->decoder.te_last = duration;
instance->decoder.parser_step = KeeloqDecoderStepCheckDuration;
}
break;
case KeeloqDecoderStepCheckDuration:
if(!level) {
if(duration >= ((uint32_t)subghz_protocol_keeloq_const.te_short * 2 +
subghz_protocol_keeloq_const.te_delta)) {
// Found end TX
instance->decoder.parser_step = KeeloqDecoderStepReset;
if((instance->decoder.decode_count_bit >=
subghz_protocol_keeloq_const.min_count_bit_for_found) &&
(instance->decoder.decode_count_bit <=
subghz_protocol_keeloq_const.min_count_bit_for_found + 2)) {
if(instance->generic.data != instance->decoder.decode_data) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit =
subghz_protocol_keeloq_const.min_count_bit_for_found;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->header_count = 0;
}
break;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_keeloq_const.te_short) <
subghz_protocol_keeloq_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_long) <
subghz_protocol_keeloq_const.te_delta * 2)) {
if(instance->decoder.decode_count_bit <
subghz_protocol_keeloq_const.min_count_bit_for_found) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
} else {
instance->decoder.decode_count_bit++;
}
instance->decoder.parser_step = KeeloqDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_keeloq_const.te_long) <
subghz_protocol_keeloq_const.te_delta * 2) &&
(DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short) <
subghz_protocol_keeloq_const.te_delta)) {
if(instance->decoder.decode_count_bit <
subghz_protocol_keeloq_const.min_count_bit_for_found) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
} else {
instance->decoder.decode_count_bit++;
}
instance->decoder.parser_step = KeeloqDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = KeeloqDecoderStepReset;
instance->header_count = 0;
}
} else {
instance->decoder.parser_step = KeeloqDecoderStepReset;
instance->header_count = 0;
}
break;
}
}
/**
* Validation of decrypt data.
* @param instance Pointer to a SubGhzBlockGeneric instance
* @param decrypt Decrypted data
* @param btn Button number, 4 bit
* @param end_serial decrement the last 10 bits of the serial number
* @return true On success
*/
static inline bool subghz_protocol_keeloq_check_decrypt(
SubGhzBlockGeneric* instance,
uint32_t decrypt,
uint8_t btn,
uint32_t end_serial) {
furi_assert(instance);
if((decrypt >> 28 == btn) && (((((uint16_t)(decrypt >> 16)) & 0xFF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0xFF) == 0))) {
instance->cnt = decrypt & 0x0000FFFF;
return true;
}
return false;
}
/**
* Checking the accepted code against the database manafacture key
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param fix Fix part of the parcel
* @param hop Hop encrypted part of the parcel
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manufacture_name
* @return true on successful search
*/
static uint8_t subghz_protocol_keeloq_check_remote_controller_selector(
SubGhzBlockGeneric* instance,
uint32_t fix,
uint32_t hop,
SubGhzKeystore* keystore,
const char** manufacture_name) {
// protocol HCS300 uses 10 bits in discriminator, HCS200 uses 8 bits, for backward compatibility, we are looking for the 8-bit pattern
// HCS300 -> uint16_t end_serial = (uint16_t)(fix & 0x3FF);
// HCS200 -> uint16_t end_serial = (uint16_t)(fix & 0xFF);
uint16_t end_serial = (uint16_t)(fix & 0xFF);
uint8_t btn = (uint8_t)(fix >> 28);
uint32_t decrypt = 0;
uint64_t man;
int res = 0;
if(mfname == 0x0) {
mfname = "";
}
if(strcmp(mfname, "") == 0) {
for
M_EACH(manufacture_code, *subghz_keystore_get_data(keystore), SubGhzKeyArray_t) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_NORMAL:
// Normal Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_SECURE:
man = subghz_protocol_keeloq_common_secure_learning(
fix, instance->seed, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_XOR_TYPE_1:
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_SERIAL_TYPE_1:
man = subghz_protocol_keeloq_common_magic_serial_type1_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_SERIAL_TYPE_2:
man = subghz_protocol_keeloq_common_magic_serial_type2_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_SERIAL_TYPE_3:
man = subghz_protocol_keeloq_common_magic_serial_type3_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_UNKNOWN:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 1;
return 1;
}
// Check for mirrored man
uint64_t man_rev = 0;
uint64_t man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 1;
return 1;
}
//###########################
// Normal Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 2;
return 1;
}
// Check for mirrored man
man = subghz_protocol_keeloq_common_normal_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 2;
return 1;
}
// Secure Learning
man = subghz_protocol_keeloq_common_secure_learning(
fix, instance->seed, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 3;
return 1;
}
// Check for mirrored man
man = subghz_protocol_keeloq_common_secure_learning(
fix, instance->seed, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 3;
return 1;
}
// Magic xor type1 learning
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 4;
return 1;
}
// Check for mirrored man
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 4;
return 1;
}
break;
}
}
} else if(strcmp(mfname, "Unknown") == 0) {
return 1;
} else {
for
M_EACH(manufacture_code, *subghz_keystore_get_data(keystore), SubGhzKeyArray_t) {
res = strcmp(furi_string_get_cstr(manufacture_code->name), mfname);
if(res == 0) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
// Simple Learning
decrypt =
subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_NORMAL:
// Normal Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man = subghz_protocol_keeloq_common_normal_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_SECURE:
man = subghz_protocol_keeloq_common_secure_learning(
fix, instance->seed, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_XOR_TYPE_1:
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_SERIAL_TYPE_1:
man = subghz_protocol_keeloq_common_magic_serial_type1_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_UNKNOWN:
// Simple Learning
decrypt =
subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 1;
return 1;
}
// Check for mirrored man
uint64_t man_rev = 0;
uint64_t man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 1;
return 1;
}
//###########################
// Normal Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man = subghz_protocol_keeloq_common_normal_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 2;
return 1;
}
// Check for mirrored man
man = subghz_protocol_keeloq_common_normal_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 2;
return 1;
}
// Secure Learning
man = subghz_protocol_keeloq_common_secure_learning(
fix, instance->seed, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 3;
return 1;
}
// Check for mirrored man
man = subghz_protocol_keeloq_common_secure_learning(
fix, instance->seed, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 3;
return 1;
}
// Magic xor type1 learning
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 4;
return 1;
}
// Check for mirrored man
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
mfname = *manufacture_name;
kl_type = 4;
return 1;
}
break;
}
}
}
}
*manufacture_name = "Unknown";
mfname = "Unknown";
instance->cnt = 0;
return 0;
}
static void subghz_protocol_keeloq_check_remote_controller(
SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name) {
uint64_t key = subghz_protocol_blocks_reverse_key(instance->data, instance->data_count_bit);
uint32_t key_fix = key >> 32;
uint32_t key_hop = key & 0x00000000ffffffff;
// If we are in BFT / Aprimatic programming mode we will set previous remembered counter and skip mf keys check
if(klq_prog_mode == KEELOQ_PROG_MODE_OFF) {
// Check key AN-Motors
if((key_hop >> 24) == ((key_hop >> 16) & 0x00ff) &&
(key_fix >> 28) == ((key_hop >> 12) & 0x0f) && (key_hop & 0xFFF) == 0x404) {
*manufacture_name = "AN-Motors";
mfname = *manufacture_name;
instance->cnt = key_hop >> 16;
} else if((key_hop & 0xFFF) == (0x000) && (key_fix >> 28) == ((key_hop >> 12) & 0x0f)) {
*manufacture_name = "HCS101";
mfname = *manufacture_name;
instance->cnt = key_hop >> 16;
} else {
subghz_protocol_keeloq_check_remote_controller_selector(
instance, key_fix, key_hop, keystore, manufacture_name);
}
temp_counter = instance->cnt;
} else if(klq_prog_mode == KEELOQ_PROG_MODE_BFT) {
*manufacture_name = "BFT";
mfname = *manufacture_name;
instance->cnt = temp_counter;
} else if(klq_prog_mode == KEELOQ_PROG_MODE_APRIMATIC) {
*manufacture_name = "Aprimatic";
mfname = *manufacture_name;
instance->cnt = temp_counter;
}
instance->serial = key_fix & 0x0FFFFFFF;
instance->btn = key_fix >> 28;
// Save original button for later use
if(subghz_custom_btn_get_original() == 0) {
subghz_custom_btn_set_original(instance->btn);
}
subghz_custom_btn_set_max(4);
}
uint8_t subghz_protocol_decoder_keeloq_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus subghz_protocol_decoder_keeloq_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
SubGhzProtocolStatus res =
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
subghz_protocol_keeloq_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
if(strcmp(instance->manufacture_name, "BFT") == 0) {
uint8_t seed_data[sizeof(uint32_t)] = {0};
for(size_t i = 0; i < sizeof(uint32_t); i++) {
seed_data[sizeof(uint32_t) - i - 1] = (instance->generic.seed >> i * 8) & 0xFF;
}
if((res == SubGhzProtocolStatusOk) &&
!flipper_format_write_hex(flipper_format, "Seed", seed_data, sizeof(uint32_t))) {
FURI_LOG_E(TAG, "DECODER Serialize: Unable to add Seed");
res = SubGhzProtocolStatusError;
}
instance->generic.seed = seed_data[0] << 24 | seed_data[1] << 16 | seed_data[2] << 8 |
seed_data[3];
}
if((res == SubGhzProtocolStatusOk) &&
!flipper_format_write_string_cstr(
flipper_format, "Manufacture", instance->manufacture_name)) {
FURI_LOG_E(TAG, "DECODER Serialize: Unable to add manufacture name");
res = SubGhzProtocolStatusError;
}
return res;
}
SubGhzProtocolStatus
subghz_protocol_decoder_keeloq_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
do {
if(SubGhzProtocolStatusOk !=
subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_keeloq_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
uint8_t seed_data[sizeof(uint32_t)] = {0};
for(size_t i = 0; i < sizeof(uint32_t); i++) {
seed_data[sizeof(uint32_t) - i - 1] = (instance->generic.seed >> i * 8) & 0xFF;
}
if(!flipper_format_read_hex(flipper_format, "Seed", seed_data, sizeof(uint32_t))) {
FURI_LOG_D(TAG, "DECODER: Missing Seed");
}
instance->generic.seed = seed_data[0] << 24 | seed_data[1] << 16 | seed_data[2] << 8 |
seed_data[3];
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
// Read manufacturer from file
if(flipper_format_read_string(
flipper_format, "Manufacture", instance->manufacture_from_file)) {
instance->manufacture_name = furi_string_get_cstr(instance->manufacture_from_file);
mfname = furi_string_get_cstr(instance->manufacture_from_file);
} else {
FURI_LOG_D(TAG, "DECODER: Missing Manufacture");
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
res = SubGhzProtocolStatusOk;
} while(false);
return res;
}
static uint8_t subghz_protocol_keeloq_get_btn_code(uint8_t last_btn_code) {
uint8_t custom_btn_id = subghz_custom_btn_get();
uint8_t original_btn_code = subghz_custom_btn_get_original();
uint8_t btn = original_btn_code;
if(last_btn_code == 0) {
last_btn_code = 0xA;
}
// Set custom button
// Basic set | 0x1 | 0x2 | 0x4 | 0x8 | 0xA or Special Learning Code |
if((custom_btn_id == SUBGHZ_CUSTOM_BTN_OK) && (original_btn_code != 0)) {
// Restore original button code
btn = original_btn_code;
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_UP) {
switch(original_btn_code) {
case 0x1:
btn = 0x2;
break;
case 0x2:
btn = 0x1;
break;
case 0xA:
btn = 0x1;
break;
case 0x4:
btn = 0x1;
break;
case 0x8:
btn = 0x1;
break;
case 0xF:
btn = 0x1;
break;
default:
btn = 0x1;
break;
}
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_DOWN) {
switch(original_btn_code) {
case 0x1:
btn = 0x4;
break;
case 0x2:
btn = 0x4;
break;
case 0xA:
btn = 0x4;
break;
case 0x4:
btn = last_btn_code;
break;
case 0x8:
btn = 0x4;
break;
case 0xF:
btn = 0x4;
break;
default:
btn = 0x4;
break;
}
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_LEFT) {
switch(original_btn_code) {
case 0x1:
btn = 0x8;
break;
case 0x2:
btn = 0x8;
break;
case 0xA:
btn = 0x8;
break;
case 0x4:
btn = 0x8;
break;
case 0x8:
btn = 0x2;
break;
case 0xF:
btn = 0x8;
break;
default:
btn = 0x8;
break;
}
} else if(custom_btn_id == SUBGHZ_CUSTOM_BTN_RIGHT) {
switch(original_btn_code) {
case 0x1:
btn = last_btn_code;
break;
case 0x2:
btn = last_btn_code;
break;
case 0xA:
btn = 0x2;
break;
case 0x4:
btn = 0x2;
break;
case 0x8:
btn = last_btn_code;
break;
case 0xF:
btn = 0x2;
break;
default:
btn = 0x2;
break;
}
}
return btn;
}
void subghz_protocol_decoder_keeloq_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
subghz_protocol_keeloq_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
uint32_t code_found_hi = instance->generic.data >> 32;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
if(strcmp(instance->manufacture_name, "BFT") == 0) {
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n"
"Fix:0x%08lX Cnt:%04lX\r\n"
"Hop:0x%08lX Btn:%01X\r\n"
"MF:%s Sd:%08lX",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
instance->generic.cnt,
code_found_reverse_lo,
instance->generic.btn,
instance->manufacture_name,
instance->generic.seed);
} else {
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n"
"Fix:0x%08lX Cnt:%04lX\r\n"
"Hop:0x%08lX Btn:%01X\r\n"
"MF:%s",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
instance->generic.cnt,
code_found_reverse_lo,
instance->generic.btn,
instance->manufacture_name);
}
}