mirror of
https://github.com/DarkFlippers/unleashed-firmware
synced 2024-12-25 04:03:07 +00:00
331 lines
11 KiB
C
331 lines
11 KiB
C
/* sha1.c - Functions to compute SHA1 message digest of files or
|
|
memory blocks according to the NIST specification FIPS-180-1.
|
|
|
|
Copyright (C) 2000-2001, 2003-2006, 2008-2022 Free Software Foundation, Inc.
|
|
|
|
This file is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as
|
|
published by the Free Software Foundation; either version 2.1 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This file is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
/* Written by Scott G. Miller
|
|
Credits:
|
|
Robert Klep <robert@ilse.nl> -- Expansion function fix
|
|
*/
|
|
|
|
/* Specification. */
|
|
#if HAVE_OPENSSL_SHA1
|
|
#define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
|
|
#endif
|
|
#include "sha1.h"
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
#define SWAP(n) (n)
|
|
#else
|
|
#include "byteswap.h"
|
|
#define SWAP(n) swap_uint32(n)
|
|
#endif
|
|
|
|
#if !HAVE_OPENSSL_SHA1
|
|
|
|
/* This array contains the bytes used to pad the buffer to the next
|
|
64-byte boundary. (RFC 1321, 3.1: Step 1) */
|
|
static const unsigned char fillbuf[64] = {0x80, 0 /* , 0, 0, ... */};
|
|
|
|
/* Take a pointer to a 160 bit block of data (five 32 bit ints) and
|
|
initialize it to the start constants of the SHA1 algorithm. This
|
|
must be called before using hash in the call to sha1_hash. */
|
|
void sha1_init_ctx(struct sha1_ctx* ctx) {
|
|
ctx->A = 0x67452301;
|
|
ctx->B = 0xefcdab89;
|
|
ctx->C = 0x98badcfe;
|
|
ctx->D = 0x10325476;
|
|
ctx->E = 0xc3d2e1f0;
|
|
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
/* Copy the 4 byte value from v into the memory location pointed to by *cp,
|
|
If your architecture allows unaligned access this is equivalent to
|
|
* (uint32_t *) cp = v */
|
|
static void set_uint32(char* cp, uint32_t v) {
|
|
memcpy(cp, &v, sizeof v);
|
|
}
|
|
|
|
/* Put result from CTX in first 20 bytes following RESBUF. The result
|
|
must be in little endian byte order. */
|
|
void* sha1_read_ctx(const struct sha1_ctx* ctx, void* resbuf) {
|
|
char* r = resbuf;
|
|
set_uint32(r + 0 * sizeof ctx->A, SWAP(ctx->A));
|
|
set_uint32(r + 1 * sizeof ctx->B, SWAP(ctx->B));
|
|
set_uint32(r + 2 * sizeof ctx->C, SWAP(ctx->C));
|
|
set_uint32(r + 3 * sizeof ctx->D, SWAP(ctx->D));
|
|
set_uint32(r + 4 * sizeof ctx->E, SWAP(ctx->E));
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF. */
|
|
void* sha1_finish_ctx(struct sha1_ctx* ctx, void* resbuf) {
|
|
/* Take yet unprocessed bytes into account. */
|
|
uint32_t bytes = ctx->buflen;
|
|
size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if(ctx->total[0] < bytes) ++ctx->total[1];
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
ctx->buffer[size - 2] = SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 29));
|
|
ctx->buffer[size - 1] = SWAP(ctx->total[0] << 3);
|
|
|
|
memcpy(&((char*)ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
|
|
|
|
/* Process last bytes. */
|
|
sha1_process_block(ctx->buffer, size * 4, ctx);
|
|
|
|
return sha1_read_ctx(ctx, resbuf);
|
|
}
|
|
|
|
/* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
|
|
result is always in little endian byte order, so that a byte-wise
|
|
output yields to the wanted ASCII representation of the message
|
|
digest. */
|
|
void* sha1_buffer(const char* buffer, size_t len, void* resblock) {
|
|
struct sha1_ctx ctx;
|
|
|
|
/* Initialize the computation context. */
|
|
sha1_init_ctx(&ctx);
|
|
|
|
/* Process whole buffer but last len % 64 bytes. */
|
|
sha1_process_bytes(buffer, len, &ctx);
|
|
|
|
/* Put result in desired memory area. */
|
|
return sha1_finish_ctx(&ctx, resblock);
|
|
}
|
|
|
|
void sha1_process_bytes(const void* buffer, size_t len, struct sha1_ctx* ctx) {
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if(ctx->buflen != 0) {
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
|
|
memcpy(&((char*)ctx->buffer)[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if(ctx->buflen > 64) {
|
|
sha1_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
|
|
|
|
ctx->buflen &= 63;
|
|
/* The regions in the following copy operation cannot overlap,
|
|
because ctx->buflen < 64 ≤ (left_over + add) & ~63. */
|
|
memcpy(ctx->buffer, &((char*)ctx->buffer)[(left_over + add) & ~63], ctx->buflen);
|
|
}
|
|
|
|
buffer = (const char*)buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if(len >= 64) {
|
|
#if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
|
|
#define UNALIGNED_P(p) ((uintptr_t)(p) % sizeof(uint32_t) != 0)
|
|
if(UNALIGNED_P(buffer))
|
|
while(len > 64) {
|
|
sha1_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx);
|
|
buffer = (const char*)buffer + 64;
|
|
len -= 64;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
sha1_process_block(buffer, len & ~63, ctx);
|
|
buffer = (const char*)buffer + (len & ~63);
|
|
len &= 63;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes in internal buffer. */
|
|
if(len > 0) {
|
|
size_t left_over = ctx->buflen;
|
|
|
|
memcpy(&((char*)ctx->buffer)[left_over], buffer, len);
|
|
left_over += len;
|
|
if(left_over >= 64) {
|
|
sha1_process_block(ctx->buffer, 64, ctx);
|
|
left_over -= 64;
|
|
/* The regions in the following copy operation cannot overlap,
|
|
because left_over ≤ 64. */
|
|
memcpy(ctx->buffer, &ctx->buffer[16], left_over);
|
|
}
|
|
ctx->buflen = left_over;
|
|
}
|
|
}
|
|
|
|
/* --- Code below is the primary difference between md5.c and sha1.c --- */
|
|
|
|
/* SHA1 round constants */
|
|
#define K1 0x5a827999
|
|
#define K2 0x6ed9eba1
|
|
#define K3 0x8f1bbcdc
|
|
#define K4 0xca62c1d6
|
|
|
|
/* Round functions. Note that F2 is the same as F4. */
|
|
#define F1(B, C, D) (D ^ (B & (C ^ D)))
|
|
#define F2(B, C, D) (B ^ C ^ D)
|
|
#define F3(B, C, D) ((B & C) | (D & (B | C)))
|
|
#define F4(B, C, D) (B ^ C ^ D)
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 64 == 0.
|
|
Most of this code comes from GnuPG's cipher/sha1.c. */
|
|
|
|
void sha1_process_block(const void* buffer, size_t len, struct sha1_ctx* ctx) {
|
|
const uint32_t* words = buffer;
|
|
size_t nwords = len / sizeof(uint32_t);
|
|
const uint32_t* endp = words + nwords;
|
|
uint32_t x[16];
|
|
uint32_t a = ctx->A;
|
|
uint32_t b = ctx->B;
|
|
uint32_t c = ctx->C;
|
|
uint32_t d = ctx->D;
|
|
uint32_t e = ctx->E;
|
|
uint32_t lolen = len;
|
|
|
|
/* First increment the byte count. RFC 1321 specifies the possible
|
|
length of the file up to 2^64 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += lolen;
|
|
ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
|
|
|
|
#define rol(x, n) (((x) << (n)) | ((uint32_t)(x) >> (32 - (n))))
|
|
|
|
#define M(I) \
|
|
(tm = x[I & 0x0f] ^ x[(I - 14) & 0x0f] ^ x[(I - 8) & 0x0f] ^ x[(I - 3) & 0x0f], \
|
|
(x[I & 0x0f] = rol(tm, 1)))
|
|
|
|
#define R(A, B, C, D, E, F, K, M) \
|
|
do { \
|
|
E += rol(A, 5) + F(B, C, D) + K + M; \
|
|
B = rol(B, 30); \
|
|
} while(0)
|
|
|
|
while(words < endp) {
|
|
uint32_t tm;
|
|
int t;
|
|
for(t = 0; t < 16; t++) {
|
|
x[t] = SWAP(*words);
|
|
words++;
|
|
}
|
|
|
|
R(a, b, c, d, e, F1, K1, x[0]);
|
|
R(e, a, b, c, d, F1, K1, x[1]);
|
|
R(d, e, a, b, c, F1, K1, x[2]);
|
|
R(c, d, e, a, b, F1, K1, x[3]);
|
|
R(b, c, d, e, a, F1, K1, x[4]);
|
|
R(a, b, c, d, e, F1, K1, x[5]);
|
|
R(e, a, b, c, d, F1, K1, x[6]);
|
|
R(d, e, a, b, c, F1, K1, x[7]);
|
|
R(c, d, e, a, b, F1, K1, x[8]);
|
|
R(b, c, d, e, a, F1, K1, x[9]);
|
|
R(a, b, c, d, e, F1, K1, x[10]);
|
|
R(e, a, b, c, d, F1, K1, x[11]);
|
|
R(d, e, a, b, c, F1, K1, x[12]);
|
|
R(c, d, e, a, b, F1, K1, x[13]);
|
|
R(b, c, d, e, a, F1, K1, x[14]);
|
|
R(a, b, c, d, e, F1, K1, x[15]);
|
|
R(e, a, b, c, d, F1, K1, M(16));
|
|
R(d, e, a, b, c, F1, K1, M(17));
|
|
R(c, d, e, a, b, F1, K1, M(18));
|
|
R(b, c, d, e, a, F1, K1, M(19));
|
|
R(a, b, c, d, e, F2, K2, M(20));
|
|
R(e, a, b, c, d, F2, K2, M(21));
|
|
R(d, e, a, b, c, F2, K2, M(22));
|
|
R(c, d, e, a, b, F2, K2, M(23));
|
|
R(b, c, d, e, a, F2, K2, M(24));
|
|
R(a, b, c, d, e, F2, K2, M(25));
|
|
R(e, a, b, c, d, F2, K2, M(26));
|
|
R(d, e, a, b, c, F2, K2, M(27));
|
|
R(c, d, e, a, b, F2, K2, M(28));
|
|
R(b, c, d, e, a, F2, K2, M(29));
|
|
R(a, b, c, d, e, F2, K2, M(30));
|
|
R(e, a, b, c, d, F2, K2, M(31));
|
|
R(d, e, a, b, c, F2, K2, M(32));
|
|
R(c, d, e, a, b, F2, K2, M(33));
|
|
R(b, c, d, e, a, F2, K2, M(34));
|
|
R(a, b, c, d, e, F2, K2, M(35));
|
|
R(e, a, b, c, d, F2, K2, M(36));
|
|
R(d, e, a, b, c, F2, K2, M(37));
|
|
R(c, d, e, a, b, F2, K2, M(38));
|
|
R(b, c, d, e, a, F2, K2, M(39));
|
|
R(a, b, c, d, e, F3, K3, M(40));
|
|
R(e, a, b, c, d, F3, K3, M(41));
|
|
R(d, e, a, b, c, F3, K3, M(42));
|
|
R(c, d, e, a, b, F3, K3, M(43));
|
|
R(b, c, d, e, a, F3, K3, M(44));
|
|
R(a, b, c, d, e, F3, K3, M(45));
|
|
R(e, a, b, c, d, F3, K3, M(46));
|
|
R(d, e, a, b, c, F3, K3, M(47));
|
|
R(c, d, e, a, b, F3, K3, M(48));
|
|
R(b, c, d, e, a, F3, K3, M(49));
|
|
R(a, b, c, d, e, F3, K3, M(50));
|
|
R(e, a, b, c, d, F3, K3, M(51));
|
|
R(d, e, a, b, c, F3, K3, M(52));
|
|
R(c, d, e, a, b, F3, K3, M(53));
|
|
R(b, c, d, e, a, F3, K3, M(54));
|
|
R(a, b, c, d, e, F3, K3, M(55));
|
|
R(e, a, b, c, d, F3, K3, M(56));
|
|
R(d, e, a, b, c, F3, K3, M(57));
|
|
R(c, d, e, a, b, F3, K3, M(58));
|
|
R(b, c, d, e, a, F3, K3, M(59));
|
|
R(a, b, c, d, e, F4, K4, M(60));
|
|
R(e, a, b, c, d, F4, K4, M(61));
|
|
R(d, e, a, b, c, F4, K4, M(62));
|
|
R(c, d, e, a, b, F4, K4, M(63));
|
|
R(b, c, d, e, a, F4, K4, M(64));
|
|
R(a, b, c, d, e, F4, K4, M(65));
|
|
R(e, a, b, c, d, F4, K4, M(66));
|
|
R(d, e, a, b, c, F4, K4, M(67));
|
|
R(c, d, e, a, b, F4, K4, M(68));
|
|
R(b, c, d, e, a, F4, K4, M(69));
|
|
R(a, b, c, d, e, F4, K4, M(70));
|
|
R(e, a, b, c, d, F4, K4, M(71));
|
|
R(d, e, a, b, c, F4, K4, M(72));
|
|
R(c, d, e, a, b, F4, K4, M(73));
|
|
R(b, c, d, e, a, F4, K4, M(74));
|
|
R(a, b, c, d, e, F4, K4, M(75));
|
|
R(e, a, b, c, d, F4, K4, M(76));
|
|
R(d, e, a, b, c, F4, K4, M(77));
|
|
R(c, d, e, a, b, F4, K4, M(78));
|
|
R(b, c, d, e, a, F4, K4, M(79));
|
|
|
|
a = ctx->A += a;
|
|
b = ctx->B += b;
|
|
c = ctx->C += c;
|
|
d = ctx->D += d;
|
|
e = ctx->E += e;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Hey Emacs!
|
|
* Local Variables:
|
|
* coding: utf-8
|
|
* End:
|
|
*/
|