unleashed-firmware/applications/external/tetris_game/tetris_game.c
2023-05-22 02:54:04 +03:00

480 lines
No EOL
16 KiB
C

#include <furi.h>
#include <gui/gui.h>
#include <input/input.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <furi_hal_resources.h>
#include <furi_hal_gpio.h>
#include <dolphin/dolphin.h>
#define BORDER_OFFSET 1
#define MARGIN_OFFSET 3
#define BLOCK_HEIGHT 6
#define BLOCK_WIDTH 6
#define FIELD_WIDTH 11
#define FIELD_HEIGHT 24
#define MAX_FALL_SPEED 500
#define MIN_FALL_SPEED 100
typedef struct Point {
// Also used for offset data, which is sometimes negative
int8_t x, y;
} Point;
// Rotation logic taken from
// https://www.youtube.com/watch?v=yIpk5TJ_uaI
typedef enum { OffsetTypeCommon, OffsetTypeI, OffsetTypeO } OffsetType;
// Since we only support rotating clockwise, these are actual translation values,
// not values to be subtracted to get translation values
static const Point rotOffsetTranslation[3][4][5] = {
{{{0, 0}, {-1, 0}, {-1, -1}, {0, 2}, {-1, 2}},
{{0, 0}, {1, 0}, {1, 1}, {0, -2}, {1, -2}},
{{0, 0}, {1, 0}, {1, -1}, {0, 2}, {1, 2}},
{{0, 0}, {-1, 0}, {-1, 1}, {0, -2}, {-1, -2}}},
{{{1, 0}, {-1, 0}, {2, 0}, {-1, 1}, {2, -2}},
{{0, 1}, {-1, 1}, {2, 1}, {-1, -1}, {2, 2}},
{{-1, 0}, {1, 0}, {-2, 0}, {1, -1}, {-2, 2}},
{{0, -1}, {1, -1}, {-2, -1}, {1, 1}, {-2, -2}}},
{{{0, -1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}},
{{1, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}},
{{0, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}},
{{-1, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}}};
typedef struct {
Point p[4];
uint8_t rotIdx;
OffsetType offsetType;
} Piece;
// Shapes @ spawn locations, rotation point first
static Piece shapes[] = {
{.p = {{5, 1}, {4, 0}, {5, 0}, {6, 1}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // Z
{.p = {{5, 1}, {4, 1}, {5, 0}, {6, 0}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // S
{.p = {{5, 1}, {4, 1}, {6, 1}, {6, 0}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // L
{.p = {{5, 1}, {4, 0}, {4, 1}, {6, 1}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // J
{.p = {{5, 1}, {4, 1}, {5, 0}, {6, 1}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // T
{.p = {{5, 1}, {4, 1}, {6, 1}, {7, 1}}, .rotIdx = 0, .offsetType = OffsetTypeI}, // I
{.p = {{5, 1}, {5, 0}, {6, 0}, {6, 1}}, .rotIdx = 0, .offsetType = OffsetTypeO} // O
};
typedef enum { GameStatePlaying, GameStateGameOver } GameState;
typedef struct {
bool playField[FIELD_HEIGHT][FIELD_WIDTH];
Piece currPiece;
uint16_t numLines;
uint16_t fallSpeed;
GameState gameState;
FuriTimer* timer;
FuriMutex* mutex;
} TetrisState;
typedef enum {
EventTypeTick,
EventTypeKey,
} EventType;
typedef struct {
EventType type;
InputEvent input;
} TetrisEvent;
static void tetris_game_draw_border(Canvas* const canvas) {
canvas_draw_line(canvas, 0, 0, 0, 127);
canvas_draw_line(canvas, 0, 127, 63, 127);
canvas_draw_line(canvas, 63, 127, 63, 0);
canvas_draw_line(canvas, 2, 0, 2, 125);
canvas_draw_line(canvas, 2, 125, 61, 125);
canvas_draw_line(canvas, 61, 125, 61, 0);
}
static void tetris_game_draw_playfield(Canvas* const canvas, const TetrisState* tetris_state) {
// Playfield: 11 x 24
for(int y = 0; y < FIELD_HEIGHT; y++) {
for(int x = 0; x < FIELD_WIDTH; x++) {
if(tetris_state->playField[y][x]) {
uint16_t xOffset = x * 5;
uint16_t yOffset = y * 5;
canvas_draw_rframe(
canvas,
BORDER_OFFSET + MARGIN_OFFSET + xOffset,
BORDER_OFFSET + MARGIN_OFFSET + yOffset - 1,
BLOCK_WIDTH,
BLOCK_HEIGHT,
1);
canvas_draw_dot(
canvas,
BORDER_OFFSET + MARGIN_OFFSET + xOffset + 2,
BORDER_OFFSET + MARGIN_OFFSET + yOffset + 1);
canvas_draw_dot(
canvas,
BORDER_OFFSET + MARGIN_OFFSET + xOffset + 3,
BORDER_OFFSET + MARGIN_OFFSET + yOffset + 1);
canvas_draw_dot(
canvas,
BORDER_OFFSET + MARGIN_OFFSET + xOffset + 2,
BORDER_OFFSET + MARGIN_OFFSET + yOffset + 2);
}
}
}
}
static void tetris_game_render_callback(Canvas* const canvas, void* ctx) {
furi_assert(ctx);
const TetrisState* tetris_state = ctx;
furi_mutex_acquire(tetris_state->mutex, FuriWaitForever);
tetris_game_draw_border(canvas);
tetris_game_draw_playfield(canvas, tetris_state);
// Show score on the game field
if(tetris_state->gameState == GameStatePlaying) {
char buffer2[6];
snprintf(buffer2, sizeof(buffer2), "%u", tetris_state->numLines);
canvas_draw_str_aligned(canvas, 58, 10, AlignRight, AlignBottom, buffer2);
}
if(tetris_state->gameState == GameStateGameOver) {
// 128 x 64
canvas_set_color(canvas, ColorWhite);
canvas_draw_box(canvas, 1, 52, 62, 24);
canvas_set_color(canvas, ColorBlack);
canvas_draw_frame(canvas, 1, 52, 62, 24);
canvas_set_font(canvas, FontPrimary);
canvas_draw_str(canvas, 4, 63, "Game Over");
char buffer[13];
snprintf(buffer, sizeof(buffer), "Lines: %u", tetris_state->numLines);
canvas_set_font(canvas, FontSecondary);
canvas_draw_str_aligned(canvas, 32, 73, AlignCenter, AlignBottom, buffer);
}
furi_mutex_release(tetris_state->mutex);
}
static void tetris_game_input_callback(InputEvent* input_event, FuriMessageQueue* event_queue) {
furi_assert(event_queue);
TetrisEvent event = {.type = EventTypeKey, .input = *input_event};
furi_message_queue_put(event_queue, &event, FuriWaitForever);
}
static void tetris_game_init_state(TetrisState* tetris_state) {
tetris_state->gameState = GameStatePlaying;
tetris_state->numLines = 0;
tetris_state->fallSpeed = MAX_FALL_SPEED;
memset(tetris_state->playField, 0, sizeof(tetris_state->playField));
memcpy(&tetris_state->currPiece, &shapes[rand() % 7], sizeof(tetris_state->currPiece));
furi_timer_start(tetris_state->timer, tetris_state->fallSpeed);
}
static void tetris_game_remove_curr_piece(TetrisState* tetris_state) {
for(int i = 0; i < 4; i++) {
uint8_t x = tetris_state->currPiece.p[i].x;
uint8_t y = tetris_state->currPiece.p[i].y;
tetris_state->playField[y][x] = false;
}
}
static void tetris_game_render_curr_piece(TetrisState* tetris_state) {
for(int i = 0; i < 4; i++) {
uint8_t x = tetris_state->currPiece.p[i].x;
uint8_t y = tetris_state->currPiece.p[i].y;
tetris_state->playField[y][x] = true;
}
}
static void tetris_game_rotate_shape(Point currShape[], Point newShape[]) {
// Copy shape data
for(int i = 0; i < 4; i++) {
newShape[i] = currShape[i];
}
for(int i = 1; i < 4; i++) {
int8_t relX = currShape[i].x - currShape[0].x;
int8_t relY = currShape[i].y - currShape[0].y;
// Matrix rotation thing
int8_t newRelX = (relX * 0) + (relY * -1);
int8_t newRelY = (relX * 1) + (relY * 0);
newShape[i].x = currShape[0].x + newRelX;
newShape[i].y = currShape[0].y + newRelY;
}
}
static void tetris_game_apply_kick(Point points[], Point kick) {
for(int i = 0; i < 4; i++) {
points[i].x += kick.x;
points[i].y += kick.y;
}
}
static bool tetris_game_is_valid_pos(TetrisState* tetris_state, Point* shape) {
for(int i = 0; i < 4; i++) {
if(shape[i].x < 0 || shape[i].x > (FIELD_WIDTH - 1) ||
tetris_state->playField[shape[i].y][shape[i].x] == true) {
return false;
}
}
return true;
}
static void tetris_game_try_rotation(TetrisState* tetris_state, Piece* newPiece) {
uint8_t currRotIdx = tetris_state->currPiece.rotIdx;
Point* rotatedShape = malloc(sizeof(Point) * 4);
Point* kickedShape = malloc(sizeof(Point) * 4);
memcpy(rotatedShape, &tetris_state->currPiece.p, sizeof(tetris_state->currPiece.p));
tetris_game_rotate_shape(tetris_state->currPiece.p, rotatedShape);
for(int i = 0; i < 5; i++) {
memcpy(kickedShape, rotatedShape, (sizeof(Point) * 4));
tetris_game_apply_kick(
kickedShape, rotOffsetTranslation[newPiece->offsetType][currRotIdx][i]);
if(tetris_game_is_valid_pos(tetris_state, kickedShape)) {
memcpy(&newPiece->p, kickedShape, sizeof(newPiece->p));
newPiece->rotIdx = (newPiece->rotIdx + 1) % 4;
break;
}
}
free(rotatedShape);
free(kickedShape);
}
static bool tetris_game_row_is_line(bool row[]) {
for(int i = 0; i < FIELD_WIDTH; i++) {
if(row[i] == false) return false;
}
return true;
}
static void
tetris_game_check_for_lines(TetrisState* tetris_state, uint8_t* lines, uint8_t* numLines) {
for(int i = 0; i < FIELD_HEIGHT; i++) {
if(tetris_game_row_is_line(tetris_state->playField[i])) {
*(lines++) = i;
*numLines += 1;
}
}
}
static bool tetris_game_piece_at_bottom(TetrisState* tetris_state, Piece* newPiece) {
for(int i = 0; i < 4; i++) {
Point* pos = (Point*)&newPiece->p;
if(pos[i].y >= FIELD_HEIGHT || tetris_state->playField[pos[i].y][pos[i].x] == true) {
return true;
}
}
return false;
}
static void tetris_game_update_timer_callback(FuriMessageQueue* event_queue) {
furi_assert(event_queue);
TetrisEvent event = {.type = EventTypeTick};
furi_message_queue_put(event_queue, &event, FuriWaitForever);
}
static void
tetris_game_process_step(TetrisState* tetris_state, Piece* newPiece, bool wasDownMove) {
if(tetris_state->gameState == GameStateGameOver) return;
tetris_game_remove_curr_piece(tetris_state);
if(wasDownMove) {
if(tetris_game_piece_at_bottom(tetris_state, newPiece)) {
furi_timer_stop(tetris_state->timer);
tetris_game_render_curr_piece(tetris_state);
uint8_t numLines = 0;
uint8_t lines[] = {0, 0, 0, 0};
uint16_t nextFallSpeed;
tetris_game_check_for_lines(tetris_state, lines, &numLines);
if(numLines > 0) {
for(int i = 0; i < numLines; i++) {
// zero out row
for(int j = 0; j < FIELD_WIDTH; j++) {
tetris_state->playField[lines[i]][j] = false;
}
// move all above rows down
for(int k = lines[i]; k >= 0; k--) {
for(int m = 0; m < FIELD_WIDTH; m++) {
tetris_state->playField[k][m] =
(k == 0) ? false : tetris_state->playField[k - 1][m];
}
}
}
uint16_t oldNumLines = tetris_state->numLines;
tetris_state->numLines += numLines;
if((oldNumLines / 10) % 10 != (tetris_state->numLines / 10) % 10) {
nextFallSpeed =
tetris_state->fallSpeed - (100 / (tetris_state->numLines / 10));
if(nextFallSpeed >= MIN_FALL_SPEED) {
tetris_state->fallSpeed = nextFallSpeed;
}
}
}
// Check for game over
Piece* spawnedPiece = &shapes[rand() % 7];
if(!tetris_game_is_valid_pos(tetris_state, spawnedPiece->p)) {
tetris_state->gameState = GameStateGameOver;
} else {
memcpy(&tetris_state->currPiece, spawnedPiece, sizeof(tetris_state->currPiece));
furi_timer_start(tetris_state->timer, tetris_state->fallSpeed);
}
}
}
if(tetris_game_is_valid_pos(tetris_state, newPiece->p)) {
memcpy(&tetris_state->currPiece, newPiece, sizeof(tetris_state->currPiece));
}
tetris_game_render_curr_piece(tetris_state);
}
int32_t tetris_game_app() {
FuriMessageQueue* event_queue = furi_message_queue_alloc(8, sizeof(TetrisEvent));
TetrisState* tetris_state = malloc(sizeof(TetrisState));
tetris_state->mutex = furi_mutex_alloc(FuriMutexTypeNormal);
if(!tetris_state->mutex) {
FURI_LOG_E("TetrisGame", "cannot create mutex\r\n");
furi_message_queue_free(event_queue);
free(tetris_state);
return 255;
}
// Not doing this eventually causes issues with TimerSvc due to not sleeping/yielding enough in this task
TaskHandle_t timer_task = xTaskGetHandle(configTIMER_SERVICE_TASK_NAME);
vTaskPrioritySet(timer_task, configMAX_PRIORITIES - 1);
ViewPort* view_port = view_port_alloc();
view_port_set_orientation(view_port, ViewPortOrientationVertical);
view_port_draw_callback_set(view_port, tetris_game_render_callback, tetris_state);
view_port_input_callback_set(view_port, tetris_game_input_callback, event_queue);
// Open GUI and register view_port
Gui* gui = furi_record_open(RECORD_GUI);
gui_add_view_port(gui, view_port, GuiLayerFullscreen);
tetris_state->timer =
furi_timer_alloc(tetris_game_update_timer_callback, FuriTimerTypePeriodic, event_queue);
tetris_game_init_state(tetris_state);
TetrisEvent event;
Piece* newPiece = malloc(sizeof(Piece));
uint8_t downRepeatCounter = 0;
// Call dolphin deed on game start
DOLPHIN_DEED(DolphinDeedPluginGameStart);
for(bool processing = true; processing;) {
// This 10U implicitly sets the game loop speed. downRepeatCounter relies on this value
FuriStatus event_status = furi_message_queue_get(event_queue, &event, 10U);
furi_mutex_acquire(tetris_state->mutex, FuriWaitForever);
memcpy(newPiece, &tetris_state->currPiece, sizeof(tetris_state->currPiece));
bool wasDownMove = false;
if(!furi_hal_gpio_read(&gpio_button_right)) {
if(downRepeatCounter > 3) {
for(int i = 0; i < 4; i++) {
newPiece->p[i].y += 1;
}
downRepeatCounter = 0;
wasDownMove = true;
} else {
downRepeatCounter++;
}
}
if(event_status == FuriStatusOk) {
if(event.type == EventTypeKey) {
if(event.input.type == InputTypePress || event.input.type == InputTypeLong ||
event.input.type == InputTypeRepeat) {
switch(event.input.key) {
case InputKeyUp:
break;
case InputKeyDown:
break;
case InputKeyRight:
for(int i = 0; i < 4; i++) {
newPiece->p[i].x += 1;
}
break;
case InputKeyLeft:
for(int i = 0; i < 4; i++) {
newPiece->p[i].x -= 1;
}
break;
case InputKeyOk:
if(tetris_state->gameState == GameStatePlaying) {
tetris_game_remove_curr_piece(tetris_state);
tetris_game_try_rotation(tetris_state, newPiece);
tetris_game_render_curr_piece(tetris_state);
} else {
tetris_game_init_state(tetris_state);
}
break;
case InputKeyBack:
processing = false;
break;
default:
break;
}
}
} else if(event.type == EventTypeTick) {
// TODO: This is inverted. it returns true when the button is not pressed.
// see macro in input.c and do that
if(furi_hal_gpio_read(&gpio_button_right)) {
for(int i = 0; i < 4; i++) {
newPiece->p[i].y += 1;
}
wasDownMove = true;
}
}
}
tetris_game_process_step(tetris_state, newPiece, wasDownMove);
view_port_update(view_port);
furi_mutex_release(tetris_state->mutex);
}
furi_timer_free(tetris_state->timer);
view_port_enabled_set(view_port, false);
gui_remove_view_port(gui, view_port);
furi_record_close(RECORD_GUI);
view_port_free(view_port);
furi_message_queue_free(event_queue);
furi_mutex_free(tetris_state->mutex);
vTaskPrioritySet(timer_task, configTIMER_TASK_PRIORITY);
free(newPiece);
free(tetris_state);
return 0;
}