mirror of
https://github.com/DarkFlippers/unleashed-firmware
synced 2024-12-02 17:29:14 +00:00
d92b0a82cc
"A long time ago in a galaxy far, far away...." we started NFC subsystem refactoring. Starring: - @gornekich - NFC refactoring project lead, architect, senior developer - @gsurkov - architect, senior developer - @RebornedBrain - senior developer Supporting roles: - @skotopes, @DrZlo13, @hedger - general architecture advisors, code review - @Astrrra, @doomwastaken, @Hellitron, @ImagineVagon333 - quality assurance Special thanks: @bettse, @pcunning, @nxv, @noproto, @AloneLiberty and everyone else who has been helping us all this time and contributing valuable knowledges, ideas and source code.
381 lines
14 KiB
C
381 lines
14 KiB
C
#include "digital_sequence.h"
|
|
#include "digital_signal_i.h"
|
|
|
|
#include <furi.h>
|
|
#include <furi_hal_bus.h>
|
|
|
|
#include <stm32wbxx_ll_dma.h>
|
|
#include <stm32wbxx_ll_tim.h>
|
|
|
|
/**
|
|
* To enable debug output on an additional pin, set DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN to the required
|
|
* GpioPin variable. It can be passed at compile time via the --extra-define fbt switch.
|
|
* NOTE: This pin must be on the same GPIO port as the main pin.
|
|
*
|
|
* Example:
|
|
* ./fbt --extra-define=DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN=gpio_ext_pb3
|
|
*/
|
|
|
|
#define TAG "DigitalSequence"
|
|
|
|
/* Special value used to indicate the end of DMA ring buffer. */
|
|
#define DIGITAL_SEQUENCE_TIMER_MAX 0xFFFFFFFFUL
|
|
|
|
/* Time to wait in loops before returning */
|
|
#define DIGITAL_SEQUENCE_LOCK_WAIT_MS 10UL
|
|
#define DIGITAL_SEQUENCE_LOCK_WAIT_TICKS (DIGITAL_SEQUENCE_LOCK_WAIT_MS * 1000 * 64)
|
|
|
|
#define DIGITAL_SEQUENCE_GPIO_BUFFER_SIZE 2
|
|
|
|
/* Maximum capacity of the DMA ring buffer. */
|
|
#define DIGITAL_SEQUENCE_RING_BUFFER_SIZE 128
|
|
|
|
#define DIGITAL_SEQUENCE_RING_BUFFER_MIN_FREE_SIZE 2
|
|
|
|
/* Maximum amount of registered signals. */
|
|
#define DIGITAL_SEQUENCE_BANK_SIZE 32
|
|
|
|
typedef enum {
|
|
DigitalSequenceStateIdle,
|
|
DigitalSequenceStateActive,
|
|
} DigitalSequenceState;
|
|
|
|
typedef struct {
|
|
uint32_t data[DIGITAL_SEQUENCE_RING_BUFFER_SIZE];
|
|
uint32_t write_pos;
|
|
uint32_t read_pos;
|
|
} DigitalSequenceRingBuffer;
|
|
|
|
typedef uint32_t DigitalSequenceGpioBuffer[DIGITAL_SEQUENCE_GPIO_BUFFER_SIZE];
|
|
|
|
typedef const DigitalSignal* DigitalSequenceSignalBank[DIGITAL_SEQUENCE_BANK_SIZE];
|
|
|
|
struct DigitalSequence {
|
|
const GpioPin* gpio;
|
|
|
|
uint32_t size;
|
|
uint32_t max_size;
|
|
uint8_t* data;
|
|
|
|
LL_DMA_InitTypeDef dma_config_gpio;
|
|
LL_DMA_InitTypeDef dma_config_timer;
|
|
|
|
DigitalSequenceGpioBuffer gpio_buf;
|
|
DigitalSequenceRingBuffer timer_buf;
|
|
DigitalSequenceSignalBank signals;
|
|
DigitalSequenceState state;
|
|
};
|
|
|
|
DigitalSequence* digital_sequence_alloc(uint32_t size, const GpioPin* gpio) {
|
|
furi_assert(size);
|
|
furi_assert(gpio);
|
|
|
|
DigitalSequence* sequence = malloc(sizeof(DigitalSequence));
|
|
|
|
sequence->gpio = gpio;
|
|
sequence->max_size = size;
|
|
|
|
sequence->data = malloc(sequence->max_size);
|
|
|
|
sequence->dma_config_gpio.PeriphOrM2MSrcAddress = (uint32_t)&gpio->port->BSRR;
|
|
sequence->dma_config_gpio.MemoryOrM2MDstAddress = (uint32_t)sequence->gpio_buf;
|
|
sequence->dma_config_gpio.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
|
|
sequence->dma_config_gpio.Mode = LL_DMA_MODE_CIRCULAR;
|
|
sequence->dma_config_gpio.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
|
|
sequence->dma_config_gpio.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
|
|
sequence->dma_config_gpio.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
|
|
sequence->dma_config_gpio.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
|
|
sequence->dma_config_gpio.NbData = DIGITAL_SEQUENCE_GPIO_BUFFER_SIZE;
|
|
sequence->dma_config_gpio.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
|
|
sequence->dma_config_gpio.Priority = LL_DMA_PRIORITY_VERYHIGH;
|
|
|
|
sequence->dma_config_timer.PeriphOrM2MSrcAddress = (uint32_t)&TIM2->ARR;
|
|
sequence->dma_config_timer.MemoryOrM2MDstAddress = (uint32_t)sequence->timer_buf.data;
|
|
sequence->dma_config_timer.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
|
|
sequence->dma_config_timer.Mode = LL_DMA_MODE_CIRCULAR;
|
|
sequence->dma_config_timer.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
|
|
sequence->dma_config_timer.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
|
|
sequence->dma_config_timer.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
|
|
sequence->dma_config_timer.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
|
|
sequence->dma_config_timer.NbData = DIGITAL_SEQUENCE_RING_BUFFER_SIZE;
|
|
sequence->dma_config_timer.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
|
|
sequence->dma_config_timer.Priority = LL_DMA_PRIORITY_HIGH;
|
|
|
|
return sequence;
|
|
}
|
|
|
|
void digital_sequence_free(DigitalSequence* sequence) {
|
|
furi_assert(sequence);
|
|
|
|
free(sequence->data);
|
|
free(sequence);
|
|
}
|
|
|
|
void digital_sequence_register_signal(
|
|
DigitalSequence* sequence,
|
|
uint8_t signal_index,
|
|
const DigitalSignal* signal) {
|
|
furi_assert(sequence);
|
|
furi_assert(signal);
|
|
furi_assert(signal_index < DIGITAL_SEQUENCE_BANK_SIZE);
|
|
|
|
sequence->signals[signal_index] = signal;
|
|
}
|
|
|
|
void digital_sequence_add_signal(DigitalSequence* sequence, uint8_t signal_index) {
|
|
furi_assert(sequence);
|
|
furi_assert(signal_index < DIGITAL_SEQUENCE_BANK_SIZE);
|
|
furi_assert(sequence->size < sequence->max_size);
|
|
|
|
sequence->data[sequence->size++] = signal_index;
|
|
}
|
|
|
|
static inline void digital_sequence_start_dma(DigitalSequence* sequence) {
|
|
furi_assert(sequence);
|
|
|
|
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &sequence->dma_config_gpio);
|
|
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &sequence->dma_config_timer);
|
|
|
|
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
|
|
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
|
|
}
|
|
|
|
static inline void digital_sequence_stop_dma() {
|
|
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
|
|
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
|
|
LL_DMA_ClearFlag_TC1(DMA1);
|
|
LL_DMA_ClearFlag_TC2(DMA1);
|
|
}
|
|
|
|
static inline void digital_sequence_start_timer() {
|
|
furi_hal_bus_enable(FuriHalBusTIM2);
|
|
|
|
LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
|
|
LL_TIM_SetClockDivision(TIM2, LL_TIM_CLOCKDIVISION_DIV1);
|
|
LL_TIM_SetPrescaler(TIM2, 0);
|
|
LL_TIM_SetAutoReload(TIM2, DIGITAL_SEQUENCE_TIMER_MAX);
|
|
LL_TIM_SetCounter(TIM2, 0);
|
|
|
|
LL_TIM_EnableCounter(TIM2);
|
|
LL_TIM_EnableUpdateEvent(TIM2);
|
|
LL_TIM_EnableDMAReq_UPDATE(TIM2);
|
|
LL_TIM_GenerateEvent_UPDATE(TIM2);
|
|
}
|
|
|
|
static void digital_sequence_stop_timer() {
|
|
LL_TIM_DisableCounter(TIM2);
|
|
LL_TIM_DisableUpdateEvent(TIM2);
|
|
LL_TIM_DisableDMAReq_UPDATE(TIM2);
|
|
|
|
furi_hal_bus_disable(FuriHalBusTIM2);
|
|
}
|
|
|
|
static inline void digital_sequence_init_gpio_buffer(
|
|
DigitalSequence* sequence,
|
|
const DigitalSignal* first_signal) {
|
|
const uint32_t bit_set = sequence->gpio->pin << GPIO_BSRR_BS0_Pos
|
|
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
|
|
| DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN.pin << GPIO_BSRR_BS0_Pos
|
|
#endif
|
|
;
|
|
|
|
const uint32_t bit_reset = sequence->gpio->pin << GPIO_BSRR_BR0_Pos
|
|
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
|
|
| DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN.pin << GPIO_BSRR_BR0_Pos
|
|
#endif
|
|
;
|
|
|
|
if(first_signal->start_level) {
|
|
sequence->gpio_buf[0] = bit_set;
|
|
sequence->gpio_buf[1] = bit_reset;
|
|
} else {
|
|
sequence->gpio_buf[0] = bit_reset;
|
|
sequence->gpio_buf[1] = bit_set;
|
|
}
|
|
}
|
|
|
|
static inline void digital_sequence_finish(DigitalSequence* sequence) {
|
|
if(sequence->state == DigitalSequenceStateActive) {
|
|
const uint32_t prev_timer = DWT->CYCCNT;
|
|
|
|
do {
|
|
/* Special value has been loaded into the timer, signaling the end of transmission. */
|
|
if(TIM2->ARR == DIGITAL_SEQUENCE_TIMER_MAX) {
|
|
break;
|
|
}
|
|
|
|
if(DWT->CYCCNT - prev_timer > DIGITAL_SEQUENCE_LOCK_WAIT_TICKS) {
|
|
DigitalSequenceRingBuffer* dma_buffer = &sequence->timer_buf;
|
|
dma_buffer->read_pos = DIGITAL_SEQUENCE_RING_BUFFER_SIZE -
|
|
LL_DMA_GetDataLength(DMA1, LL_DMA_CHANNEL_2);
|
|
FURI_LOG_D(
|
|
TAG,
|
|
"[SEQ] hung %lu ms in finish (ARR 0x%08lx, read %lu, write %lu)",
|
|
DIGITAL_SEQUENCE_LOCK_WAIT_MS,
|
|
TIM2->ARR,
|
|
dma_buffer->read_pos,
|
|
dma_buffer->write_pos);
|
|
break;
|
|
}
|
|
} while(true);
|
|
}
|
|
|
|
digital_sequence_stop_timer();
|
|
digital_sequence_stop_dma();
|
|
}
|
|
|
|
static inline void digital_sequence_enqueue_period(DigitalSequence* sequence, uint32_t length) {
|
|
DigitalSequenceRingBuffer* dma_buffer = &sequence->timer_buf;
|
|
|
|
if(sequence->state == DigitalSequenceStateActive) {
|
|
const uint32_t prev_timer = DWT->CYCCNT;
|
|
|
|
do {
|
|
dma_buffer->read_pos =
|
|
DIGITAL_SEQUENCE_RING_BUFFER_SIZE - LL_DMA_GetDataLength(DMA1, LL_DMA_CHANNEL_2);
|
|
|
|
const uint32_t size_free = (DIGITAL_SEQUENCE_RING_BUFFER_SIZE + dma_buffer->read_pos -
|
|
dma_buffer->write_pos) %
|
|
DIGITAL_SEQUENCE_RING_BUFFER_SIZE;
|
|
|
|
if(size_free > DIGITAL_SEQUENCE_RING_BUFFER_MIN_FREE_SIZE) {
|
|
break;
|
|
}
|
|
|
|
if(DWT->CYCCNT - prev_timer > DIGITAL_SEQUENCE_LOCK_WAIT_TICKS) {
|
|
FURI_LOG_D(
|
|
TAG,
|
|
"[SEQ] hung %lu ms in queue (ARR 0x%08lx, read %lu, write %lu)",
|
|
DIGITAL_SEQUENCE_LOCK_WAIT_MS,
|
|
TIM2->ARR,
|
|
dma_buffer->read_pos,
|
|
dma_buffer->write_pos);
|
|
break;
|
|
}
|
|
|
|
if(TIM2->ARR == DIGITAL_SEQUENCE_TIMER_MAX) {
|
|
FURI_LOG_D(
|
|
TAG,
|
|
"[SEQ] buffer underrun in queue (ARR 0x%08lx, read %lu, write %lu)",
|
|
TIM2->ARR,
|
|
dma_buffer->read_pos,
|
|
dma_buffer->write_pos);
|
|
break;
|
|
}
|
|
} while(true);
|
|
}
|
|
|
|
dma_buffer->data[dma_buffer->write_pos] = length;
|
|
|
|
dma_buffer->write_pos += 1;
|
|
dma_buffer->write_pos %= DIGITAL_SEQUENCE_RING_BUFFER_SIZE;
|
|
|
|
dma_buffer->data[dma_buffer->write_pos] = DIGITAL_SEQUENCE_TIMER_MAX;
|
|
}
|
|
|
|
static inline void digital_sequence_timer_buffer_reset(DigitalSequence* sequence) {
|
|
sequence->timer_buf.data[0] = DIGITAL_SEQUENCE_TIMER_MAX;
|
|
sequence->timer_buf.read_pos = 0;
|
|
sequence->timer_buf.write_pos = 0;
|
|
}
|
|
|
|
void digital_sequence_transmit(DigitalSequence* sequence) {
|
|
furi_assert(sequence);
|
|
furi_assert(sequence->size);
|
|
furi_assert(sequence->state == DigitalSequenceStateIdle);
|
|
|
|
FURI_CRITICAL_ENTER();
|
|
|
|
furi_hal_gpio_init(sequence->gpio, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
|
|
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
|
|
furi_hal_gpio_init(
|
|
&DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
|
|
#endif
|
|
|
|
const DigitalSignal* signal_current = sequence->signals[sequence->data[0]];
|
|
|
|
digital_sequence_init_gpio_buffer(sequence, signal_current);
|
|
|
|
int32_t remainder_ticks = 0;
|
|
uint32_t reload_value_carry = 0;
|
|
uint32_t next_signal_index = 1;
|
|
|
|
for(;;) {
|
|
const DigitalSignal* signal_next =
|
|
(next_signal_index < sequence->size) ?
|
|
sequence->signals[sequence->data[next_signal_index++]] :
|
|
NULL;
|
|
|
|
for(uint32_t i = 0; i < signal_current->size; i++) {
|
|
const bool is_last_value = (i == signal_current->size - 1);
|
|
const uint32_t reload_value = signal_current->data[i] + reload_value_carry;
|
|
|
|
reload_value_carry = 0;
|
|
|
|
if(is_last_value) {
|
|
if(signal_next != NULL) {
|
|
/* Special case: signal boundary. Depending on whether the adjacent levels are equal or not,
|
|
* they will be combined to a single one or handled separately. */
|
|
const bool end_level = signal_current->start_level ^
|
|
((signal_current->size % 2) == 0);
|
|
|
|
/* If the adjacent levels are equal, carry the current period duration over to the next signal. */
|
|
if(end_level == signal_next->start_level) {
|
|
reload_value_carry = reload_value;
|
|
}
|
|
} else {
|
|
/** Special case: during the last period of the last signal, hold the output level indefinitely.
|
|
* @see digital_signal.h
|
|
*
|
|
* Setting reload_value_carry to a non-zero value will prevent the respective period from being
|
|
* added to the DMA ring buffer. */
|
|
reload_value_carry = 1;
|
|
}
|
|
}
|
|
|
|
/* A non-zero reload_value_carry means that the level was the same on the both sides of the signal boundary
|
|
* and the two respective periods were combined to one. */
|
|
if(reload_value_carry == 0) {
|
|
digital_sequence_enqueue_period(sequence, reload_value);
|
|
}
|
|
|
|
if(sequence->state == DigitalSequenceStateIdle) {
|
|
const bool is_buffer_filled = sequence->timer_buf.write_pos >=
|
|
(DIGITAL_SEQUENCE_RING_BUFFER_SIZE -
|
|
DIGITAL_SEQUENCE_RING_BUFFER_MIN_FREE_SIZE);
|
|
const bool is_end_of_data = (signal_next == NULL) && is_last_value;
|
|
|
|
if(is_buffer_filled || is_end_of_data) {
|
|
digital_sequence_start_dma(sequence);
|
|
digital_sequence_start_timer();
|
|
sequence->state = DigitalSequenceStateActive;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Exit the loop here when no further signals are available */
|
|
if(signal_next == NULL) break;
|
|
|
|
/* Prevent the rounding error from accumulating by distributing it across multiple periods. */
|
|
remainder_ticks += signal_current->remainder;
|
|
if(remainder_ticks >= DIGITAL_SIGNAL_T_TIM_DIV2) {
|
|
remainder_ticks -= DIGITAL_SIGNAL_T_TIM;
|
|
reload_value_carry += 1;
|
|
}
|
|
|
|
signal_current = signal_next;
|
|
};
|
|
|
|
digital_sequence_finish(sequence);
|
|
digital_sequence_timer_buffer_reset(sequence);
|
|
|
|
FURI_CRITICAL_EXIT();
|
|
|
|
sequence->state = DigitalSequenceStateIdle;
|
|
}
|
|
|
|
void digital_sequence_clear(DigitalSequence* sequence) {
|
|
furi_assert(sequence);
|
|
|
|
sequence->size = 0;
|
|
}
|