unleashed-firmware/lib/digital_signal/digital_signal.c
2023-06-08 14:58:46 +03:00

663 lines
22 KiB
C

#include "digital_signal.h"
#include <furi.h>
#include <furi_hal.h>
#include <furi_hal_resources.h>
#include <math.h>
#include <stm32wbxx_ll_dma.h>
#include <stm32wbxx_ll_tim.h>
/* must be on bank B */
// For debugging purposes use `--extra-define=DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN=gpio_ext_pb3` fbt option
struct ReloadBuffer {
uint32_t* buffer; /* DMA ringbuffer */
uint32_t size; /* maximum entry count of the ring buffer */
uint32_t write_pos; /* current buffer write index */
uint32_t read_pos; /* current buffer read index */
bool dma_active;
};
struct DigitalSequence {
uint8_t signals_size;
bool bake;
uint32_t sequence_used;
uint32_t sequence_size;
DigitalSignal** signals;
uint8_t* sequence;
const GpioPin* gpio;
uint32_t send_time;
bool send_time_active;
LL_DMA_InitTypeDef dma_config_gpio;
LL_DMA_InitTypeDef dma_config_timer;
uint32_t* gpio_buff;
struct ReloadBuffer* dma_buffer;
};
struct DigitalSignalInternals {
uint64_t factor;
uint32_t reload_reg_entries;
uint32_t reload_reg_remainder;
uint32_t gpio_buff[2];
const GpioPin* gpio;
LL_DMA_InitTypeDef dma_config_gpio;
LL_DMA_InitTypeDef dma_config_timer;
};
#define TAG "DigitalSignal"
#define F_TIM (64000000.0)
#define T_TIM 1562 /* 15.625 ns *100 */
#define T_TIM_DIV2 781 /* 15.625 ns / 2 *100 */
/* maximum entry count of the sequence dma ring buffer */
#define SEQUENCE_DMA_RINGBUFFER_SIZE 32
/* maximum number of DigitalSignals in a sequence */
#define SEQUENCE_SIGNALS_SIZE 32
/*
* if sequence size runs out from the initial value passed to digital_sequence_alloc
* the size will be increased by this amount and reallocated
*/
#define SEQUENCE_SIZE_REALLOCATE_INCREMENT 256
DigitalSignal* digital_signal_alloc(uint32_t max_edges_cnt) {
DigitalSignal* signal = malloc(sizeof(DigitalSignal));
signal->start_level = true;
signal->edges_max_cnt = max_edges_cnt;
signal->edge_timings = malloc(signal->edges_max_cnt * sizeof(uint32_t));
signal->edge_cnt = 0;
signal->reload_reg_buff = malloc(signal->edges_max_cnt * sizeof(uint32_t));
signal->internals = malloc(sizeof(DigitalSignalInternals));
DigitalSignalInternals* internals = signal->internals;
internals->factor = 1024 * 1024;
internals->dma_config_gpio.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
internals->dma_config_gpio.Mode = LL_DMA_MODE_CIRCULAR;
internals->dma_config_gpio.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
internals->dma_config_gpio.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
internals->dma_config_gpio.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
internals->dma_config_gpio.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
internals->dma_config_gpio.NbData = 2;
internals->dma_config_gpio.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
internals->dma_config_gpio.Priority = LL_DMA_PRIORITY_VERYHIGH;
internals->dma_config_timer.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR);
internals->dma_config_timer.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
internals->dma_config_timer.Mode = LL_DMA_MODE_NORMAL;
internals->dma_config_timer.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
internals->dma_config_timer.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
internals->dma_config_timer.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
internals->dma_config_timer.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
internals->dma_config_timer.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
internals->dma_config_timer.Priority = LL_DMA_PRIORITY_HIGH;
return signal;
}
void digital_signal_free(DigitalSignal* signal) {
furi_assert(signal);
free(signal->edge_timings);
free(signal->reload_reg_buff);
free(signal->internals);
free(signal);
}
bool digital_signal_append(DigitalSignal* signal_a, DigitalSignal* signal_b) {
furi_assert(signal_a);
furi_assert(signal_b);
if(signal_a->edges_max_cnt < signal_a->edge_cnt + signal_b->edge_cnt) {
return false;
}
/* in case there are no edges in our target signal, the signal to append makes the rules */
if(!signal_a->edge_cnt) {
signal_a->start_level = signal_b->start_level;
}
bool end_level = signal_a->start_level;
if(signal_a->edge_cnt) {
end_level = signal_a->start_level ^ !(signal_a->edge_cnt % 2);
}
uint8_t start_copy = 0;
if(end_level == signal_b->start_level) {
if(signal_a->edge_cnt) {
signal_a->edge_timings[signal_a->edge_cnt - 1] += signal_b->edge_timings[0];
start_copy += 1;
} else {
signal_a->edge_timings[signal_a->edge_cnt] += signal_b->edge_timings[0];
}
}
for(size_t i = 0; i < signal_b->edge_cnt - start_copy; i++) {
signal_a->edge_timings[signal_a->edge_cnt + i] = signal_b->edge_timings[start_copy + i];
}
signal_a->edge_cnt += signal_b->edge_cnt - start_copy;
return true;
}
bool digital_signal_get_start_level(DigitalSignal* signal) {
furi_assert(signal);
return signal->start_level;
}
uint32_t digital_signal_get_edges_cnt(DigitalSignal* signal) {
furi_assert(signal);
return signal->edge_cnt;
}
void digital_signal_add(DigitalSignal* signal, uint32_t ticks) {
furi_assert(signal);
furi_assert(signal->edge_cnt < signal->edges_max_cnt);
signal->edge_timings[signal->edge_cnt++] = ticks;
}
void digital_signal_add_pulse(DigitalSignal* signal, uint32_t ticks, bool level) {
furi_assert(signal);
furi_assert(signal->edge_cnt < signal->edges_max_cnt);
/* virgin signal? add it as the only level */
if(signal->edge_cnt == 0) {
signal->start_level = level;
signal->edge_timings[signal->edge_cnt++] = ticks;
} else {
bool end_level = signal->start_level ^ !(signal->edge_cnt % 2);
if(level != end_level) {
signal->edge_timings[signal->edge_cnt++] = ticks;
} else {
signal->edge_timings[signal->edge_cnt - 1] += ticks;
}
}
}
uint32_t digital_signal_get_edge(DigitalSignal* signal, uint32_t edge_num) {
furi_assert(signal);
furi_assert(edge_num < signal->edge_cnt);
return signal->edge_timings[edge_num];
}
void digital_signal_prepare_arr(DigitalSignal* signal) {
furi_assert(signal);
DigitalSignalInternals* internals = signal->internals;
/* set up signal polarities */
if(internals->gpio) {
uint32_t bit_set = internals->gpio->pin;
uint32_t bit_reset = internals->gpio->pin << 16;
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
bit_set |= DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN.pin;
bit_reset |= DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN.pin << 16;
#endif
if(signal->start_level) {
internals->gpio_buff[0] = bit_set;
internals->gpio_buff[1] = bit_reset;
} else {
internals->gpio_buff[0] = bit_reset;
internals->gpio_buff[1] = bit_set;
}
}
/* set up edge timings */
internals->reload_reg_entries = 0;
for(size_t pos = 0; pos < signal->edge_cnt; pos++) {
uint32_t pulse_duration = signal->edge_timings[pos] + internals->reload_reg_remainder;
if(pulse_duration < 10 || pulse_duration > 10000000) {
/*FURI_LOG_D(
TAG,
"[prepare] pulse_duration out of range: %lu = %lu * %llu",
pulse_duration,
signal->edge_timings[pos],
internals->factor);*/
pulse_duration = 100;
}
uint32_t pulse_ticks = (pulse_duration + T_TIM_DIV2) / T_TIM;
internals->reload_reg_remainder = pulse_duration - (pulse_ticks * T_TIM);
if(pulse_ticks > 1) {
signal->reload_reg_buff[internals->reload_reg_entries++] = pulse_ticks - 1;
}
}
}
static void digital_signal_stop_dma() {
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
LL_DMA_ClearFlag_TC1(DMA1);
LL_DMA_ClearFlag_TC2(DMA1);
}
static void digital_signal_stop_timer() {
LL_TIM_DisableCounter(TIM2);
LL_TIM_DisableUpdateEvent(TIM2);
LL_TIM_DisableDMAReq_UPDATE(TIM2);
if(furi_hal_bus_is_enabled(FuriHalBusTIM2)) {
furi_hal_bus_disable(FuriHalBusTIM2);
}
}
static void digital_signal_setup_timer() {
if(!furi_hal_bus_is_enabled(FuriHalBusTIM2)) {
furi_hal_bus_enable(FuriHalBusTIM2);
}
LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
LL_TIM_SetClockDivision(TIM2, LL_TIM_CLOCKDIVISION_DIV1);
LL_TIM_SetPrescaler(TIM2, 0);
LL_TIM_SetAutoReload(TIM2, 0xFFFFFFFF);
LL_TIM_SetCounter(TIM2, 0);
}
static void digital_signal_start_timer() {
LL_TIM_EnableCounter(TIM2);
LL_TIM_EnableUpdateEvent(TIM2);
LL_TIM_EnableDMAReq_UPDATE(TIM2);
LL_TIM_GenerateEvent_UPDATE(TIM2);
}
static bool digital_signal_setup_dma(DigitalSignal* signal) {
furi_assert(signal);
DigitalSignalInternals* internals = signal->internals;
if(!signal->internals->reload_reg_entries) {
return false;
}
digital_signal_stop_dma();
internals->dma_config_gpio.MemoryOrM2MDstAddress = (uint32_t)internals->gpio_buff;
internals->dma_config_gpio.PeriphOrM2MSrcAddress = (uint32_t) & (internals->gpio->port->BSRR);
internals->dma_config_timer.MemoryOrM2MDstAddress = (uint32_t)signal->reload_reg_buff;
internals->dma_config_timer.NbData = signal->internals->reload_reg_entries;
/* set up DMA channel 1 and 2 for GPIO and timer copy operations */
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &internals->dma_config_gpio);
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &internals->dma_config_timer);
/* enable both DMA channels */
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
return true;
}
void digital_signal_send(DigitalSignal* signal, const GpioPin* gpio) {
furi_assert(signal);
if(!signal->edge_cnt) {
return;
}
/* Configure gpio as output */
signal->internals->gpio = gpio;
furi_hal_gpio_init(
signal->internals->gpio, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
digital_signal_prepare_arr(signal);
digital_signal_setup_dma(signal);
digital_signal_setup_timer();
digital_signal_start_timer();
while(!LL_DMA_IsActiveFlag_TC2(DMA1)) {
}
digital_signal_stop_timer();
digital_signal_stop_dma();
}
static void digital_sequence_alloc_signals(DigitalSequence* sequence, uint32_t size) {
sequence->signals_size = size;
sequence->signals = malloc(sequence->signals_size * sizeof(DigitalSignal*));
}
static void digital_sequence_alloc_sequence(DigitalSequence* sequence, uint32_t size) {
sequence->sequence_used = 0;
sequence->sequence_size = size;
sequence->sequence = malloc(sequence->sequence_size);
sequence->send_time = 0;
sequence->send_time_active = false;
}
DigitalSequence* digital_sequence_alloc(uint32_t size, const GpioPin* gpio) {
furi_assert(gpio);
DigitalSequence* sequence = malloc(sizeof(DigitalSequence));
sequence->gpio = gpio;
sequence->bake = false;
sequence->dma_buffer = malloc(sizeof(struct ReloadBuffer));
sequence->dma_buffer->size = SEQUENCE_DMA_RINGBUFFER_SIZE;
sequence->dma_buffer->buffer = malloc(sequence->dma_buffer->size * sizeof(uint32_t));
sequence->dma_config_gpio.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
sequence->dma_config_gpio.Mode = LL_DMA_MODE_CIRCULAR;
sequence->dma_config_gpio.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
sequence->dma_config_gpio.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
sequence->dma_config_gpio.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
sequence->dma_config_gpio.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
sequence->dma_config_gpio.NbData = 2;
sequence->dma_config_gpio.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
sequence->dma_config_gpio.Priority = LL_DMA_PRIORITY_VERYHIGH;
sequence->dma_config_timer.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
sequence->dma_config_timer.Mode = LL_DMA_MODE_CIRCULAR;
sequence->dma_config_timer.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
sequence->dma_config_timer.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
sequence->dma_config_timer.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
sequence->dma_config_timer.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
sequence->dma_config_timer.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR);
sequence->dma_config_timer.MemoryOrM2MDstAddress = (uint32_t)sequence->dma_buffer->buffer;
sequence->dma_config_timer.NbData = sequence->dma_buffer->size;
sequence->dma_config_timer.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
sequence->dma_config_timer.Priority = LL_DMA_PRIORITY_HIGH;
digital_sequence_alloc_signals(sequence, SEQUENCE_SIGNALS_SIZE);
digital_sequence_alloc_sequence(sequence, size);
return sequence;
}
void digital_sequence_free(DigitalSequence* sequence) {
furi_assert(sequence);
free(sequence->signals);
free(sequence->sequence);
free(sequence->dma_buffer->buffer);
free(sequence->dma_buffer);
free(sequence);
}
void digital_sequence_set_signal(
DigitalSequence* sequence,
uint8_t signal_index,
DigitalSignal* signal) {
furi_assert(sequence);
furi_assert(signal);
furi_assert(signal_index < sequence->signals_size);
sequence->signals[signal_index] = signal;
signal->internals->gpio = sequence->gpio;
signal->internals->reload_reg_remainder = 0;
digital_signal_prepare_arr(signal);
}
void digital_sequence_set_sendtime(DigitalSequence* sequence, uint32_t send_time) {
furi_assert(sequence);
sequence->send_time = send_time;
sequence->send_time_active = true;
}
void digital_sequence_add(DigitalSequence* sequence, uint8_t signal_index) {
furi_assert(sequence);
furi_assert(signal_index < sequence->signals_size);
if(sequence->sequence_used >= sequence->sequence_size) {
sequence->sequence_size += SEQUENCE_SIZE_REALLOCATE_INCREMENT;
sequence->sequence = realloc(sequence->sequence, sequence->sequence_size); //-V701
furi_assert(sequence->sequence);
}
sequence->sequence[sequence->sequence_used++] = signal_index;
}
static bool digital_sequence_setup_dma(DigitalSequence* sequence) {
furi_assert(sequence);
digital_signal_stop_dma();
sequence->dma_config_gpio.MemoryOrM2MDstAddress = (uint32_t)sequence->gpio_buff;
sequence->dma_config_gpio.PeriphOrM2MSrcAddress = (uint32_t) & (sequence->gpio->port->BSRR);
/* set up DMA channel 1 and 2 for GPIO and timer copy operations */
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &sequence->dma_config_gpio);
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &sequence->dma_config_timer);
/* enable both DMA channels */
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
return true;
}
static DigitalSignal* digital_sequence_bake(DigitalSequence* sequence) {
furi_assert(sequence);
uint32_t edges = 0;
for(uint32_t pos = 0; pos < sequence->sequence_used; pos++) {
uint8_t signal_index = sequence->sequence[pos];
DigitalSignal* sig = sequence->signals[signal_index];
edges += sig->edge_cnt;
}
DigitalSignal* ret = digital_signal_alloc(edges);
for(uint32_t pos = 0; pos < sequence->sequence_used; pos++) {
uint8_t signal_index = sequence->sequence[pos];
DigitalSignal* sig = sequence->signals[signal_index];
digital_signal_append(ret, sig);
}
return ret;
}
static void digital_sequence_update_pos(DigitalSequence* sequence) {
struct ReloadBuffer* dma_buffer = sequence->dma_buffer;
dma_buffer->read_pos = dma_buffer->size - LL_DMA_GetDataLength(DMA1, LL_DMA_CHANNEL_2);
}
static const uint32_t wait_ms = 10;
static const uint32_t wait_ticks = wait_ms * 1000 * 64;
static void digital_sequence_finish(DigitalSequence* sequence) {
struct ReloadBuffer* dma_buffer = sequence->dma_buffer;
if(dma_buffer->dma_active) {
uint32_t prev_timer = DWT->CYCCNT;
uint32_t end_pos = (dma_buffer->write_pos + 1) % dma_buffer->size;
do {
uint32_t last_pos = dma_buffer->read_pos;
digital_sequence_update_pos(sequence);
/* we are finished, when the DMA transferred the 0xFFFFFFFF-timer which is the current write_pos */
if(dma_buffer->read_pos == end_pos) {
break;
}
if(last_pos != dma_buffer->read_pos) { //-V547
prev_timer = DWT->CYCCNT;
}
if(DWT->CYCCNT - prev_timer > wait_ticks) {
/*FURI_LOG_D(
TAG,
"[SEQ] hung %lu ms in finish (ARR 0x%08lx, read %lu, write %lu)",
wait_ms,
TIM2->ARR,
dma_buffer->read_pos,
dma_buffer->write_pos);*/
break;
}
} while(1);
}
digital_signal_stop_timer();
digital_signal_stop_dma();
}
static void digital_sequence_queue_pulse(DigitalSequence* sequence, uint32_t length) {
struct ReloadBuffer* dma_buffer = sequence->dma_buffer;
if(dma_buffer->dma_active) {
uint32_t prev_timer = DWT->CYCCNT;
uint32_t end_pos = (dma_buffer->write_pos + 1) % dma_buffer->size;
do {
uint32_t last_pos = dma_buffer->read_pos;
digital_sequence_update_pos(sequence);
if(dma_buffer->read_pos != end_pos) {
break;
}
if(last_pos != dma_buffer->read_pos) { //-V547
prev_timer = DWT->CYCCNT;
}
if(DWT->CYCCNT - prev_timer > wait_ticks) {
/*FURI_LOG_D(
TAG,
"[SEQ] hung %lu ms in queue (ARR 0x%08lx, read %lu, write %lu)",
wait_ms,
TIM2->ARR,
dma_buffer->read_pos,
dma_buffer->write_pos);*/
break;
}
} while(1);
}
dma_buffer->buffer[dma_buffer->write_pos] = length;
dma_buffer->write_pos = (dma_buffer->write_pos + 1) % dma_buffer->size;
dma_buffer->buffer[dma_buffer->write_pos] = 0xFFFFFFFF;
}
bool digital_sequence_send(DigitalSequence* sequence) {
furi_assert(sequence);
struct ReloadBuffer* dma_buffer = sequence->dma_buffer;
furi_hal_gpio_init(sequence->gpio, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
#ifdef DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN
furi_hal_gpio_init(
&DIGITAL_SIGNAL_DEBUG_OUTPUT_PIN, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
#endif
if(sequence->bake) {
DigitalSignal* sig = digital_sequence_bake(sequence);
digital_signal_send(sig, sequence->gpio);
digital_signal_free(sig);
return true;
}
int32_t remainder = 0;
bool traded_first = false;
FURI_CRITICAL_ENTER();
dma_buffer->dma_active = false;
dma_buffer->buffer[0] = 0xFFFFFFFF;
dma_buffer->read_pos = 0;
dma_buffer->write_pos = 0;
for(uint32_t seq_pos = 0; seq_pos < sequence->sequence_used; seq_pos++) {
uint8_t signal_index = sequence->sequence[seq_pos];
DigitalSignal* sig = sequence->signals[signal_index];
bool last_signal = ((seq_pos + 1) == sequence->sequence_used);
/* all signals are prepared and we can re-use the GPIO buffer from the fist signal */
if(seq_pos == 0) {
sequence->gpio_buff = sig->internals->gpio_buff;
}
for(uint32_t pulse_pos = 0; pulse_pos < sig->internals->reload_reg_entries; pulse_pos++) {
if(traded_first) {
traded_first = false;
continue;
}
uint32_t pulse_length = 0;
bool last_pulse = ((pulse_pos + 1) == sig->internals->reload_reg_entries);
pulse_length = sig->reload_reg_buff[pulse_pos];
/* when we are too late more than half a tick, make the first edge temporarily longer */
if(remainder >= T_TIM_DIV2) {
remainder -= T_TIM;
pulse_length += 1;
}
remainder += sig->internals->reload_reg_remainder;
/* last pulse in that signal and have a next signal? */
if(last_pulse) {
if((seq_pos + 1) < sequence->sequence_used) {
DigitalSignal* sig_next = sequence->signals[sequence->sequence[seq_pos + 1]];
/* when a signal ends with the same level as the next signal begins, let the fist signal generate the whole pulse */
/* beware, we do not want the level after the last edge, but the last level before that edge */
bool end_level = sig->start_level ^ ((sig->edge_cnt % 2) == 0);
/* take from the next, add it to the current if they have the same level */
if(end_level == sig_next->start_level) {
pulse_length += sig_next->reload_reg_buff[0];
traded_first = true;
}
}
}
digital_sequence_queue_pulse(sequence, pulse_length);
/* start transmission when buffer was filled enough */
bool start_send = sequence->dma_buffer->write_pos >= (sequence->dma_buffer->size - 4);
/* or it was the last pulse */
if(last_pulse && last_signal) {
start_send = true;
}
/* start transmission */
if(start_send && !dma_buffer->dma_active) {
digital_sequence_setup_dma(sequence);
digital_signal_setup_timer();
/* if the send time is specified, wait till the core timer passed beyond that time */
if(sequence->send_time_active) {
sequence->send_time_active = false;
while(sequence->send_time - DWT->CYCCNT < 0x80000000) {
}
}
digital_signal_start_timer();
dma_buffer->dma_active = true;
}
}
}
/* wait until last dma transaction was finished */
digital_sequence_finish(sequence);
FURI_CRITICAL_EXIT();
return true;
}
void digital_sequence_clear(DigitalSequence* sequence) {
furi_assert(sequence);
sequence->sequence_used = 0;
}
void digital_sequence_timebase_correction(DigitalSequence* sequence, float factor) {
for(uint32_t sig_pos = 0; sig_pos < sequence->signals_size; sig_pos++) {
DigitalSignal* signal = sequence->signals[sig_pos];
if(signal) {
signal->internals->factor = (uint32_t)(1024 * 1024 * factor);
digital_signal_prepare_arr(signal);
}
}
}