mirror of
https://github.com/DarkFlippers/unleashed-firmware
synced 2025-01-07 18:28:47 +00:00
309 lines
12 KiB
C
309 lines
12 KiB
C
/* sha512.c - Functions to compute SHA512 message digest of files or
|
|
memory blocks according to the NIST specification FIPS-180-2.
|
|
|
|
Copyright (C) 2005-2006, 2008-2022 Free Software Foundation, Inc.
|
|
|
|
This file is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as
|
|
published by the Free Software Foundation; either version 2.1 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This file is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
/* Written by David Madore, considerably copypasting from
|
|
Scott G. Miller's sha1.c
|
|
*/
|
|
|
|
/* Specification. */
|
|
#include "sha512.h"
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "byteswap.h"
|
|
#include "sha_pad_buffer.h"
|
|
|
|
#define SWAP(n) swap_uint64(n)
|
|
|
|
/*
|
|
Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
|
|
initializes it to the start constants of the SHA512 algorithm. This
|
|
must be called before using hash in the call to sha512_hash
|
|
*/
|
|
void sha512_init_ctx(struct sha512_ctx* ctx) {
|
|
ctx->state[0] = u64hilo(0x6a09e667, 0xf3bcc908);
|
|
ctx->state[1] = u64hilo(0xbb67ae85, 0x84caa73b);
|
|
ctx->state[2] = u64hilo(0x3c6ef372, 0xfe94f82b);
|
|
ctx->state[3] = u64hilo(0xa54ff53a, 0x5f1d36f1);
|
|
ctx->state[4] = u64hilo(0x510e527f, 0xade682d1);
|
|
ctx->state[5] = u64hilo(0x9b05688c, 0x2b3e6c1f);
|
|
ctx->state[6] = u64hilo(0x1f83d9ab, 0xfb41bd6b);
|
|
ctx->state[7] = u64hilo(0x5be0cd19, 0x137e2179);
|
|
|
|
ctx->total[0] = ctx->total[1] = u64lo(0);
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
/* Copy the value from V into the memory location pointed to by *CP,
|
|
If your architecture allows unaligned access, this is equivalent to
|
|
* (__typeof__ (v) *) cp = v */
|
|
static void set_uint64(char* cp, u64 v) {
|
|
memcpy(cp, &v, sizeof v);
|
|
}
|
|
|
|
/* Put result from CTX in first 64 bytes following RESBUF.
|
|
The result must be in little endian byte order. */
|
|
void* sha512_read_ctx(const struct sha512_ctx* ctx, void* resbuf) {
|
|
int i;
|
|
char* r = resbuf;
|
|
|
|
for(i = 0; i < 8; i++) set_uint64(r + i * sizeof ctx->state[0], SWAP(ctx->state[i]));
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF. */
|
|
static void sha512_conclude_ctx(struct sha512_ctx* ctx) {
|
|
/* Take yet unprocessed bytes into account. */
|
|
size_t bytes = ctx->buflen;
|
|
size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] = u64plus(ctx->total[0], u64lo(bytes));
|
|
if(u64lt(ctx->total[0], u64lo(bytes))) ctx->total[1] = u64plus(ctx->total[1], u64lo(1));
|
|
|
|
/* Put the 128-bit file length in *bits* at the end of the buffer.
|
|
Use set_uint64 rather than a simple assignment, to avoid risk of
|
|
unaligned access. */
|
|
set_uint64(
|
|
(char*)&ctx->buffer[size - 2],
|
|
SWAP(u64or(u64shl(ctx->total[1], 3), u64shr(ctx->total[0], 61))));
|
|
set_uint64((char*)&ctx->buffer[size - 1], SWAP(u64shl(ctx->total[0], 3)));
|
|
|
|
sha_pad_buffer(&((uint8_t*)ctx->buffer)[bytes], (size - 2) * 8 - bytes);
|
|
|
|
/* Process last bytes. */
|
|
sha512_process_block(ctx->buffer, size * 8, ctx);
|
|
}
|
|
|
|
void* sha512_finish_ctx(struct sha512_ctx* ctx, void* resbuf) {
|
|
sha512_conclude_ctx(ctx);
|
|
return sha512_read_ctx(ctx, resbuf);
|
|
}
|
|
|
|
/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
|
|
result is always in little endian byte order, so that a byte-wise
|
|
output yields to the wanted ASCII representation of the message
|
|
digest. */
|
|
void* sha512_buffer(const char* buffer, size_t len, void* resblock) {
|
|
struct sha512_ctx ctx;
|
|
|
|
/* Initialize the computation context. */
|
|
sha512_init_ctx(&ctx);
|
|
|
|
/* Process whole buffer but last len % 128 bytes. */
|
|
sha512_process_bytes(buffer, len, &ctx);
|
|
|
|
/* Put result in desired memory area. */
|
|
return sha512_finish_ctx(&ctx, resblock);
|
|
}
|
|
|
|
void sha512_process_bytes(const void* buffer, size_t len, struct sha512_ctx* ctx) {
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if(ctx->buflen != 0) {
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 256 - left_over > len ? len : 256 - left_over;
|
|
|
|
memcpy(&((char*)ctx->buffer)[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if(ctx->buflen > 128) {
|
|
sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx);
|
|
|
|
ctx->buflen &= 127;
|
|
/* The regions in the following copy operation cannot overlap,
|
|
because ctx->buflen < 128 ≤ (left_over + add) & ~127. */
|
|
memcpy(ctx->buffer, &((char*)ctx->buffer)[(left_over + add) & ~127], ctx->buflen);
|
|
}
|
|
|
|
buffer = (const char*)buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if(len >= 128) {
|
|
#if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
|
|
#define UNALIGNED_P(p) ((uintptr_t)(p) % sizeof(u64) != 0)
|
|
if(UNALIGNED_P(buffer))
|
|
while(len > 128) {
|
|
sha512_process_block(memcpy(ctx->buffer, buffer, 128), 128, ctx); //-V1086
|
|
buffer = (const char*)buffer + 128;
|
|
len -= 128;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
sha512_process_block(buffer, len & ~127, ctx);
|
|
buffer = (const char*)buffer + (len & ~127);
|
|
len &= 127;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes in internal buffer. */
|
|
if(len > 0) {
|
|
size_t left_over = ctx->buflen;
|
|
|
|
memcpy(&((char*)ctx->buffer)[left_over], buffer, len);
|
|
left_over += len;
|
|
if(left_over >= 128) {
|
|
sha512_process_block(ctx->buffer, 128, ctx);
|
|
left_over -= 128;
|
|
/* The regions in the following copy operation cannot overlap,
|
|
because left_over ≤ 128. */
|
|
memcpy(ctx->buffer, &ctx->buffer[16], left_over);
|
|
}
|
|
ctx->buflen = left_over;
|
|
}
|
|
}
|
|
|
|
/* --- Code below is the primary difference between sha1.c and sha512.c --- */
|
|
|
|
/* SHA512 round constants */
|
|
#define K(I) sha512_round_constants[I]
|
|
static u64 const sha512_round_constants[80] = {
|
|
u64init(0x428a2f98, 0xd728ae22), u64init(0x71374491, 0x23ef65cd),
|
|
u64init(0xb5c0fbcf, 0xec4d3b2f), u64init(0xe9b5dba5, 0x8189dbbc),
|
|
u64init(0x3956c25b, 0xf348b538), u64init(0x59f111f1, 0xb605d019),
|
|
u64init(0x923f82a4, 0xaf194f9b), u64init(0xab1c5ed5, 0xda6d8118),
|
|
u64init(0xd807aa98, 0xa3030242), u64init(0x12835b01, 0x45706fbe),
|
|
u64init(0x243185be, 0x4ee4b28c), u64init(0x550c7dc3, 0xd5ffb4e2),
|
|
u64init(0x72be5d74, 0xf27b896f), u64init(0x80deb1fe, 0x3b1696b1),
|
|
u64init(0x9bdc06a7, 0x25c71235), u64init(0xc19bf174, 0xcf692694),
|
|
u64init(0xe49b69c1, 0x9ef14ad2), u64init(0xefbe4786, 0x384f25e3),
|
|
u64init(0x0fc19dc6, 0x8b8cd5b5), u64init(0x240ca1cc, 0x77ac9c65),
|
|
u64init(0x2de92c6f, 0x592b0275), u64init(0x4a7484aa, 0x6ea6e483),
|
|
u64init(0x5cb0a9dc, 0xbd41fbd4), u64init(0x76f988da, 0x831153b5),
|
|
u64init(0x983e5152, 0xee66dfab), u64init(0xa831c66d, 0x2db43210),
|
|
u64init(0xb00327c8, 0x98fb213f), u64init(0xbf597fc7, 0xbeef0ee4),
|
|
u64init(0xc6e00bf3, 0x3da88fc2), u64init(0xd5a79147, 0x930aa725),
|
|
u64init(0x06ca6351, 0xe003826f), u64init(0x14292967, 0x0a0e6e70),
|
|
u64init(0x27b70a85, 0x46d22ffc), u64init(0x2e1b2138, 0x5c26c926),
|
|
u64init(0x4d2c6dfc, 0x5ac42aed), u64init(0x53380d13, 0x9d95b3df),
|
|
u64init(0x650a7354, 0x8baf63de), u64init(0x766a0abb, 0x3c77b2a8),
|
|
u64init(0x81c2c92e, 0x47edaee6), u64init(0x92722c85, 0x1482353b),
|
|
u64init(0xa2bfe8a1, 0x4cf10364), u64init(0xa81a664b, 0xbc423001),
|
|
u64init(0xc24b8b70, 0xd0f89791), u64init(0xc76c51a3, 0x0654be30),
|
|
u64init(0xd192e819, 0xd6ef5218), u64init(0xd6990624, 0x5565a910),
|
|
u64init(0xf40e3585, 0x5771202a), u64init(0x106aa070, 0x32bbd1b8),
|
|
u64init(0x19a4c116, 0xb8d2d0c8), u64init(0x1e376c08, 0x5141ab53),
|
|
u64init(0x2748774c, 0xdf8eeb99), u64init(0x34b0bcb5, 0xe19b48a8),
|
|
u64init(0x391c0cb3, 0xc5c95a63), u64init(0x4ed8aa4a, 0xe3418acb),
|
|
u64init(0x5b9cca4f, 0x7763e373), u64init(0x682e6ff3, 0xd6b2b8a3),
|
|
u64init(0x748f82ee, 0x5defb2fc), u64init(0x78a5636f, 0x43172f60),
|
|
u64init(0x84c87814, 0xa1f0ab72), u64init(0x8cc70208, 0x1a6439ec),
|
|
u64init(0x90befffa, 0x23631e28), u64init(0xa4506ceb, 0xde82bde9),
|
|
u64init(0xbef9a3f7, 0xb2c67915), u64init(0xc67178f2, 0xe372532b),
|
|
u64init(0xca273ece, 0xea26619c), u64init(0xd186b8c7, 0x21c0c207),
|
|
u64init(0xeada7dd6, 0xcde0eb1e), u64init(0xf57d4f7f, 0xee6ed178),
|
|
u64init(0x06f067aa, 0x72176fba), u64init(0x0a637dc5, 0xa2c898a6),
|
|
u64init(0x113f9804, 0xbef90dae), u64init(0x1b710b35, 0x131c471b),
|
|
u64init(0x28db77f5, 0x23047d84), u64init(0x32caab7b, 0x40c72493),
|
|
u64init(0x3c9ebe0a, 0x15c9bebc), u64init(0x431d67c4, 0x9c100d4c),
|
|
u64init(0x4cc5d4be, 0xcb3e42b6), u64init(0x597f299c, 0xfc657e2a),
|
|
u64init(0x5fcb6fab, 0x3ad6faec), u64init(0x6c44198c, 0x4a475817),
|
|
};
|
|
|
|
/* Round functions. */
|
|
#define F2(A, B, C) u64or(u64and(A, B), u64and(C, u64or(A, B)))
|
|
#define F1(E, F, G) u64xor(G, u64and(E, u64xor(F, G)))
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 128 == 0.
|
|
Most of this code comes from GnuPG's cipher/sha1.c. */
|
|
|
|
void sha512_process_block(const void* buffer, size_t len, struct sha512_ctx* ctx) {
|
|
u64 const* words = buffer;
|
|
u64 const* endp = words + len / sizeof(u64);
|
|
u64 x[16];
|
|
u64 a = ctx->state[0];
|
|
u64 b = ctx->state[1];
|
|
u64 c = ctx->state[2];
|
|
u64 d = ctx->state[3];
|
|
u64 e = ctx->state[4];
|
|
u64 f = ctx->state[5];
|
|
u64 g = ctx->state[6];
|
|
u64 h = ctx->state[7];
|
|
u64 lolen = u64size(len);
|
|
|
|
/* First increment the byte count. FIPS PUB 180-2 specifies the possible
|
|
length of the file up to 2^128 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] = u64plus(ctx->total[0], lolen);
|
|
ctx->total[1] = u64plus(
|
|
ctx->total[1], u64plus(u64size(len >> 31 >> 31 >> 2), u64lo(u64lt(ctx->total[0], lolen))));
|
|
|
|
#define S0(x) u64xor(u64rol(x, 63), u64xor(u64rol(x, 56), u64shr(x, 7)))
|
|
#define S1(x) u64xor(u64rol(x, 45), u64xor(u64rol(x, 3), u64shr(x, 6)))
|
|
#define SS0(x) u64xor(u64rol(x, 36), u64xor(u64rol(x, 30), u64rol(x, 25)))
|
|
#define SS1(x) u64xor(u64rol(x, 50), u64xor(u64rol(x, 46), u64rol(x, 23)))
|
|
|
|
#define M(I) \
|
|
(x[(I)&15] = u64plus( \
|
|
x[(I)&15], \
|
|
u64plus(S1(x[((I)-2) & 15]), u64plus(x[((I)-7) & 15], S0(x[((I)-15) & 15])))))
|
|
|
|
#define R(A, B, C, D, E, F, G, H, K, M) \
|
|
do { \
|
|
u64 t0 = u64plus(SS0(A), F2(A, B, C)); \
|
|
u64 t1 = u64plus(H, u64plus(SS1(E), u64plus(F1(E, F, G), u64plus(K, M)))); \
|
|
D = u64plus(D, t1); \
|
|
H = u64plus(t0, t1); \
|
|
} while(0)
|
|
|
|
while(words < endp) {
|
|
int t;
|
|
/* FIXME: see sha1.c for a better implementation. */
|
|
for(t = 0; t < 16; t++) {
|
|
x[t] = SWAP(*words);
|
|
words++;
|
|
}
|
|
|
|
for(int i = 0; i < 80; i++) {
|
|
u64 xx = i < 16 ? x[i] : M(i);
|
|
R(a, b, c, d, e, f, g, h, K(i), xx);
|
|
u64 tt = a;
|
|
a = h;
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d;
|
|
d = c;
|
|
c = b;
|
|
b = tt;
|
|
}
|
|
|
|
a = ctx->state[0] = u64plus(ctx->state[0], a);
|
|
b = ctx->state[1] = u64plus(ctx->state[1], b);
|
|
c = ctx->state[2] = u64plus(ctx->state[2], c);
|
|
d = ctx->state[3] = u64plus(ctx->state[3], d);
|
|
e = ctx->state[4] = u64plus(ctx->state[4], e);
|
|
f = ctx->state[5] = u64plus(ctx->state[5], f);
|
|
g = ctx->state[6] = u64plus(ctx->state[6], g);
|
|
h = ctx->state[7] = u64plus(ctx->state[7], h);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hey Emacs!
|
|
* Local Variables:
|
|
* coding: utf-8
|
|
* End:
|
|
*/
|