unleashed-firmware/lib/one_wire/ibutton/protocols/protocol_cyfral.c
SG 9bfb641d3e
[FL-2529][FL-1628] New LF-RFID subsystem (#1601)
* Makefile: unit tests pack
* RFID: pulse joiner and its unit test
* Move pulse protocol helpers to appropriate place
* Drop pulse_joiner tests
* Generic protocol, protocols dictionary, unit test
* Protocol dict unit test
* iButton: protocols dictionary
* Lib: varint
* Lib: profiler
* Unit test: varint
* rfid: worker mockup
* LFRFID: em4100 unit test
* Storage: file_exist function
* rfid: fsk osc
* rfid: generic fsk demodulator
* rfid: protocol em4100
* rfid: protocol h10301
* rfid: protocol io prox xsf
* Unit test: rfid protocols
* rfid: new hal
* rfid: raw worker
* Unit test: fix error output
* rfid: worker
* rfid: plain c cli
* fw: migrate to scons
* lfrfid: full io prox support
* unit test: io prox protocol
* SubGHZ: move bit defines to source
* FSK oscillator: level duration compability
* libs: bit manipulation library
* lfrfid: ioprox protocol, use bit library and new level duration method of FSK ocillator
* bit lib: unit tests
* Bit lib: parity tests, remove every nth bit, copy bits
* Lfrfid: awid protocol
* bit lib: uint16 and uint32 getters, unit tests
* lfrfid: FDX-B read, draft version
* Minunit: better memeq assert
* bit lib: reverse, print, print regions
* Protocol dict: get protocol features, get protocol validate count
* lfrfid worker: improved read
* lfrfid raw worker: psk support
* Cli: rfid plain C cli
* protocol AWID: render
* protocol em4100: render
* protocol h10301: render
* protocol indala26: support every indala 26 scramble
* Protocol IO Prox: render
* Protocol FDX-B: advanced read
* lfrfid: remove unused test function
* lfrfid: fix os primitives
* bit lib: crc16 and unit tests
* FDX-B: save data
* lfrfid worker: increase stream size. Alloc raw worker only when needed.
* lfrfid: indala26 emulation
* lfrfid: prepare to write
* lfrfid: fdx-b emulation
* lfrfid: awid, ioprox write
* lfrfid: write t55xx w\o validation
* lfrfid: better t55xx block0 handling
* lfrfid: use new t5577 functions in worker
* lfrfid: improve protocol description
* lfrfid: write and verify
* lfrfid: delete cpp cli
* lfrfid: improve worker usage
* lfrfid-app: step to new worker
* lfrfid: old indala (I40134) load fallback
* lfrfid: indala26, recover wrong synced data
* lfrfid: remove old worker
* lfrfid app: dummy read screen
* lfrfid app: less dummy read screen
* lfrfid: generic 96-bit HID protocol (covers up to HID 37-bit)
* rename
* lfrfid: improve indala26 read
* lfrfid: generic 192-bit HID protocol (covers all HID extended)
* lfrfid: TODO about HID render
* lfrfid: new protocol FDX-A
* lfrfid-app: correct worker stop on exit
* misc fixes
* lfrfid: FDX-A and HID distinguishability has been fixed.
* lfrfid: decode HID size header and render it (#1612)
* lfrfid: rename HID96 and HID192 to HIDProx and HIDExt
* lfrfid: extra actions scene
* lfrfid: decode generic HID Proximity size lazily (#1618)
* lib: stream of data buffers concept
* lfrfid: raw file helper
* lfrfid: changed raw worker api
* lfrfid: packed varint pair
* lfrfid: read stream speedup
* lfrfid app: show read mode
* Documentation
* lfrfid app: raw read gui
* lfrfid app: storage check for raw read
* memleak fix
* review fixes
* lfrfid app: read blink color
* lfrfid app: reset key name after read
* review fixes
* lfrfid app: fix copypasted text
* review fixes
* lfrfid: disable debug gpio
* lfrfid: card detection events
* lfrfid: change validation color from magenta to green
* Update core_defines.
* lfrfid: prefix fdx-b id by zeroes
* lfrfid: parse up to 43-bit HID Proximity keys (#1640)
* Fbt: downgrade toolchain and fix PS1
* lfrfid: fix unit tests
* lfrfid app: remove printf
* lfrfid: indala26, use bit 55 as data
* lfrfid: indala26, better brief format
* lfrfid: indala26, loading fallback
* lfrfid: read timing tuning

Co-authored-by: James Ide <ide@users.noreply.github.com>
Co-authored-by: あく <alleteam@gmail.com>
2022-08-24 00:57:39 +09:00

344 lines
No EOL
9.8 KiB
C

#include <furi.h>
#include <furi_hal.h>
#include "protocol_cyfral.h"
#define CYFRAL_DATA_SIZE sizeof(uint16_t)
#define CYFRAL_PERIOD (125 * furi_hal_cortex_instructions_per_microsecond())
#define CYFRAL_0_LOW (CYFRAL_PERIOD * 0.66f)
#define CYFRAL_0_HI (CYFRAL_PERIOD * 0.33f)
#define CYFRAL_1_LOW (CYFRAL_PERIOD * 0.33f)
#define CYFRAL_1_HI (CYFRAL_PERIOD * 0.66f)
#define CYFRAL_MAX_PERIOD_US 230
typedef enum {
CYFRAL_BIT_WAIT_FRONT_HIGH,
CYFRAL_BIT_WAIT_FRONT_LOW,
} CyfralBitState;
typedef enum {
CYFRAL_WAIT_START_NIBBLE,
CYFRAL_READ_NIBBLE,
CYFRAL_READ_STOP_NIBBLE,
} CyfralState;
typedef struct {
CyfralState state;
CyfralBitState bit_state;
// high + low period time
uint32_t period_time;
// temporary nibble storage
uint8_t nibble;
// data valid flag
// MUST be checked only in READ_STOP_NIBBLE state
bool data_valid;
// nibble index, we expect 8 nibbles
uint8_t index;
// bit index in nibble, 4 bit per nibble
uint8_t bit_index;
// max period, 230us x clock per us
uint32_t max_period;
} ProtocolCyfralDecoder;
typedef struct {
uint32_t data;
uint32_t index;
} ProtocolCyfralEncoder;
typedef struct {
uint16_t data;
ProtocolCyfralDecoder decoder;
ProtocolCyfralEncoder encoder;
} ProtocolCyfral;
static void* protocol_cyfral_alloc(void) {
ProtocolCyfral* proto = malloc(sizeof(ProtocolCyfral));
return (void*)proto;
}
static void protocol_cyfral_free(ProtocolCyfral* proto) {
free(proto);
}
static uint8_t* protocol_cyfral_get_data(ProtocolCyfral* proto) {
return (uint8_t*)&proto->data;
}
static void protocol_cyfral_decoder_start(ProtocolCyfral* proto) {
ProtocolCyfralDecoder* cyfral = &proto->decoder;
cyfral->state = CYFRAL_WAIT_START_NIBBLE;
cyfral->bit_state = CYFRAL_BIT_WAIT_FRONT_LOW;
cyfral->period_time = 0;
cyfral->bit_index = 0;
cyfral->index = 0;
cyfral->nibble = 0;
cyfral->data_valid = true;
cyfral->max_period = CYFRAL_MAX_PERIOD_US * furi_hal_cortex_instructions_per_microsecond();
proto->data = 0;
}
static bool protocol_cyfral_decoder_process_bit(
ProtocolCyfralDecoder* cyfral,
bool polarity,
uint32_t length,
bool* bit_ready,
bool* bit_value) {
bool result = true;
*bit_ready = false;
// bit start from low
switch(cyfral->bit_state) {
case CYFRAL_BIT_WAIT_FRONT_LOW:
if(polarity == true) {
cyfral->period_time += length;
*bit_ready = true;
if(cyfral->period_time <= cyfral->max_period) {
if((cyfral->period_time / 2) > length) {
*bit_value = false;
} else {
*bit_value = true;
}
} else {
result = false;
}
cyfral->bit_state = CYFRAL_BIT_WAIT_FRONT_HIGH;
} else {
result = false;
}
break;
case CYFRAL_BIT_WAIT_FRONT_HIGH:
if(polarity == false) {
cyfral->period_time = length;
cyfral->bit_state = CYFRAL_BIT_WAIT_FRONT_LOW;
} else {
result = false;
}
break;
}
return result;
}
static bool protocol_cyfral_decoder_feed(ProtocolCyfral* proto, bool level, uint32_t duration) {
ProtocolCyfralDecoder* cyfral = &proto->decoder;
bool bit_ready;
bool bit_value;
bool decoded = false;
switch(cyfral->state) {
case CYFRAL_WAIT_START_NIBBLE:
// wait for start word
if(protocol_cyfral_decoder_process_bit(cyfral, level, duration, &bit_ready, &bit_value)) {
if(bit_ready) {
cyfral->nibble = ((cyfral->nibble << 1) | bit_value) & 0x0F;
if(cyfral->nibble == 0b0001) {
cyfral->nibble = 0;
cyfral->state = CYFRAL_READ_NIBBLE;
}
}
} else {
protocol_cyfral_decoder_start(proto);
}
break;
case CYFRAL_READ_NIBBLE:
// read nibbles
if(protocol_cyfral_decoder_process_bit(cyfral, level, duration, &bit_ready, &bit_value)) {
if(bit_ready) {
cyfral->nibble = (cyfral->nibble << 1) | bit_value;
cyfral->bit_index++;
//convert every nibble to 2-bit index
if(cyfral->bit_index == 4) {
switch(cyfral->nibble) {
case 0b1110:
proto->data = (proto->data << 2) | 0b11;
break;
case 0b1101:
proto->data = (proto->data << 2) | 0b10;
break;
case 0b1011:
proto->data = (proto->data << 2) | 0b01;
break;
case 0b0111:
proto->data = (proto->data << 2) | 0b00;
break;
default:
cyfral->data_valid = false;
break;
}
cyfral->nibble = 0;
cyfral->bit_index = 0;
cyfral->index++;
}
// succefully read 8 nibbles
if(cyfral->index == 8) {
cyfral->state = CYFRAL_READ_STOP_NIBBLE;
}
}
} else {
protocol_cyfral_decoder_start(proto);
}
break;
case CYFRAL_READ_STOP_NIBBLE:
// read stop nibble
if(protocol_cyfral_decoder_process_bit(cyfral, level, duration, &bit_ready, &bit_value)) {
if(bit_ready) {
cyfral->nibble = ((cyfral->nibble << 1) | bit_value) & 0x0F;
cyfral->bit_index++;
switch(cyfral->bit_index) {
case 0:
case 1:
case 2:
case 3:
break;
case 4:
if(cyfral->nibble == 0b0001) {
// validate data
if(cyfral->data_valid) {
decoded = true;
} else {
protocol_cyfral_decoder_start(proto);
}
} else {
protocol_cyfral_decoder_start(proto);
}
break;
default:
protocol_cyfral_decoder_start(proto);
break;
}
}
} else {
protocol_cyfral_decoder_start(proto);
}
break;
}
return decoded;
}
static uint32_t protocol_cyfral_encoder_encode(const uint16_t data) {
uint32_t value = 0;
for(int8_t i = 0; i <= 7; i++) {
switch((data >> (i * 2)) & 0b00000011) {
case 0b11:
value = value << 4;
value += 0b00000111;
break;
case 0b10:
value = value << 4;
value += 0b00001011;
break;
case 0b01:
value = value << 4;
value += 0b00001101;
break;
case 0b00:
value = value << 4;
value += 0b00001110;
break;
default:
break;
}
}
return value;
}
static bool protocol_cyfral_encoder_start(ProtocolCyfral* proto) {
proto->encoder.index = 0;
proto->encoder.data = protocol_cyfral_encoder_encode(proto->data);
return true;
}
static LevelDuration protocol_cyfral_encoder_yield(ProtocolCyfral* proto) {
LevelDuration result;
if(proto->encoder.index < 8) {
// start word (0b0001)
switch(proto->encoder.index) {
case 0:
result = level_duration_make(false, CYFRAL_0_LOW);
break;
case 1:
result = level_duration_make(true, CYFRAL_0_HI);
break;
case 2:
result = level_duration_make(false, CYFRAL_0_LOW);
break;
case 3:
result = level_duration_make(true, CYFRAL_0_HI);
break;
case 4:
result = level_duration_make(false, CYFRAL_0_LOW);
break;
case 5:
result = level_duration_make(true, CYFRAL_0_HI);
break;
case 6:
result = level_duration_make(false, CYFRAL_1_LOW);
break;
case 7:
result = level_duration_make(true, CYFRAL_1_HI);
break;
}
} else {
// data
uint8_t data_start_index = proto->encoder.index - 8;
bool clock_polarity = (data_start_index) % 2;
uint8_t bit_index = (data_start_index) / 2;
bool bit_value = ((proto->encoder.data >> bit_index) & 1);
if(!clock_polarity) {
if(bit_value) {
result = level_duration_make(false, CYFRAL_1_LOW);
} else {
result = level_duration_make(false, CYFRAL_0_LOW);
}
} else {
if(bit_value) {
result = level_duration_make(true, CYFRAL_1_HI);
} else {
result = level_duration_make(true, CYFRAL_0_HI);
}
}
}
proto->encoder.index++;
if(proto->encoder.index >= (9 * 4 * 2)) {
proto->encoder.index = 0;
}
return result;
}
const ProtocolBase protocol_cyfral = {
.name = "Cyfral",
.manufacturer = "Cyfral",
.data_size = CYFRAL_DATA_SIZE,
.alloc = (ProtocolAlloc)protocol_cyfral_alloc,
.free = (ProtocolFree)protocol_cyfral_free,
.get_data = (ProtocolGetData)protocol_cyfral_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_cyfral_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_cyfral_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_cyfral_encoder_start,
.yield = (ProtocolEncoderYield)protocol_cyfral_encoder_yield,
},
};