unleashed-firmware/lib/lfrfid/protocols/protocol_nexwatch.c
Sebastian Mauer 44426c7612
[LRFID] Add support for Nexkey/Nexwatch (#2680)
* [LRFID] Add support for Nexkey/Nexwatch
* Update protocol_nexwatch.c: Remove unnecessary check

Co-authored-by: SG <who.just.the.doctor@gmail.com>
Co-authored-by: あく <alleteam@gmail.com>
2023-05-29 17:19:42 +09:00

323 lines
11 KiB
C

#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <lfrfid/tools/bit_lib.h>
#include "lfrfid_protocols.h"
#define NEXWATCH_PREAMBLE_BIT_SIZE (8)
#define NEXWATCH_PREAMBLE_DATA_SIZE (1)
#define NEXWATCH_ENCODED_BIT_SIZE (96)
#define NEXWATCH_ENCODED_DATA_SIZE ((NEXWATCH_ENCODED_BIT_SIZE) / 8)
#define NEXWATCH_DECODED_BIT_SIZE (NEXWATCH_DECODED_DATA_SIZE * 8)
#define NEXWATCH_DECODED_DATA_SIZE (8)
#define NEXWATCH_US_PER_BIT (255)
#define NEXWATCH_ENCODER_PULSES_PER_BIT (16)
typedef struct {
uint8_t magic;
char desc[13];
uint8_t chk;
} ProtocolNexwatchMagic;
ProtocolNexwatchMagic magic_items[] = {
{0xBE, "Quadrakey", 0},
{0x88, "Nexkey", 0},
{0x86, "Honeywell", 0}};
typedef struct {
uint8_t data_index;
uint8_t bit_clock_index;
bool last_bit;
bool current_polarity;
bool pulse_phase;
} ProtocolNexwatchEncoder;
typedef struct {
uint8_t encoded_data[NEXWATCH_ENCODED_DATA_SIZE];
uint8_t negative_encoded_data[NEXWATCH_ENCODED_DATA_SIZE];
uint8_t corrupted_encoded_data[NEXWATCH_ENCODED_DATA_SIZE];
uint8_t corrupted_negative_encoded_data[NEXWATCH_ENCODED_DATA_SIZE];
uint8_t data[NEXWATCH_DECODED_DATA_SIZE];
ProtocolNexwatchEncoder encoder;
} ProtocolNexwatch;
ProtocolNexwatch* protocol_nexwatch_alloc(void) {
ProtocolNexwatch* protocol = malloc(sizeof(ProtocolNexwatch));
return protocol;
};
void protocol_nexwatch_free(ProtocolNexwatch* protocol) {
free(protocol);
};
uint8_t* protocol_nexwatch_get_data(ProtocolNexwatch* protocol) {
return protocol->data;
};
void protocol_nexwatch_decoder_start(ProtocolNexwatch* protocol) {
memset(protocol->encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE);
memset(protocol->negative_encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE);
memset(protocol->corrupted_encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE);
memset(protocol->corrupted_negative_encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE);
};
static bool protocol_nexwatch_check_preamble(uint8_t* data, size_t bit_index) {
// 01010110
if(bit_lib_get_bits(data, bit_index, 8) != 0b01010110) return false;
return true;
}
static uint8_t protocol_nexwatch_parity_swap(uint8_t parity) {
uint8_t a = (((parity >> 3) & 1));
a |= (((parity >> 1) & 1) << 1);
a |= (((parity >> 2) & 1) << 2);
a |= ((parity & 1) << 3);
return a;
}
static uint8_t protocol_nexwatch_parity(const uint8_t hexid[5]) {
uint8_t p = 0;
for(uint8_t i = 0; i < 5; i++) {
p ^= ((hexid[i]) & 0xF0) >> 4;
p ^= ((hexid[i]) & 0x0F);
}
return protocol_nexwatch_parity_swap(p);
}
static uint8_t protocol_nexwatch_checksum(uint8_t magic, uint32_t id, uint8_t parity) {
uint8_t a = ((id >> 24) & 0xFF);
a -= ((id >> 16) & 0xFF);
a -= ((id >> 8) & 0xFF);
a -= (id & 0xFF);
a -= magic;
a -= (bit_lib_reverse_8_fast(parity) >> 4);
return bit_lib_reverse_8_fast(a);
}
static bool protocol_nexwatch_can_be_decoded(uint8_t* data) {
if(!protocol_nexwatch_check_preamble(data, 0)) return false;
// Check for reserved word (32-bit)
if(bit_lib_get_bits_32(data, 8, 32) != 0) {
return false;
}
uint8_t parity = bit_lib_get_bits(data, 76, 4);
// parity check
// from 32b hex id, 4b mode
uint8_t hex[5] = {0};
for(uint8_t i = 0; i < 5; i++) {
hex[i] = bit_lib_get_bits(data, 40 + (i * 8), 8);
}
//mode is only 4 bits.
hex[4] &= 0xf0;
uint8_t calc_parity = protocol_nexwatch_parity(hex);
if(calc_parity != parity) {
return false;
}
return true;
}
static bool protocol_nexwatch_decoder_feed_internal(bool polarity, uint32_t time, uint8_t* data) {
time += (NEXWATCH_US_PER_BIT / 2);
size_t bit_count = (time / NEXWATCH_US_PER_BIT);
bool result = false;
if(bit_count < NEXWATCH_ENCODED_BIT_SIZE) {
for(size_t i = 0; i < bit_count; i++) {
bit_lib_push_bit(data, NEXWATCH_ENCODED_DATA_SIZE, polarity);
if(protocol_nexwatch_can_be_decoded(data)) {
result = true;
break;
}
}
}
return result;
}
static void protocol_nexwatch_descramble(uint32_t* id, uint32_t* scrambled) {
// 255 = Not used/Unknown other values are the bit offset in the ID/FC values
const uint8_t hex_2_id[] = {31, 27, 23, 19, 15, 11, 7, 3, 30, 26, 22, 18, 14, 10, 6, 2,
29, 25, 21, 17, 13, 9, 5, 1, 28, 24, 20, 16, 12, 8, 4, 0};
*id = 0;
for(uint8_t idx = 0; idx < 32; idx++) {
bool bit_state = (*scrambled >> hex_2_id[idx]) & 1;
*id |= (bit_state << (31 - idx));
}
}
static void protocol_nexwatch_decoder_save(uint8_t* data_to, const uint8_t* data_from) {
uint32_t id = bit_lib_get_bits_32(data_from, 40, 32);
data_to[4] = (uint8_t)id;
data_to[3] = (uint8_t)(id >>= 8);
data_to[2] = (uint8_t)(id >>= 8);
data_to[1] = (uint8_t)(id >>= 8);
data_to[0] = (uint8_t)(id >>= 8);
uint32_t check = bit_lib_get_bits_32(data_from, 72, 24);
data_to[7] = (uint8_t)check;
data_to[6] = (uint8_t)(check >>= 8);
data_to[5] = (uint8_t)(check >>= 8);
}
bool protocol_nexwatch_decoder_feed(ProtocolNexwatch* protocol, bool level, uint32_t duration) {
bool result = false;
if(duration > (NEXWATCH_US_PER_BIT / 2)) {
if(protocol_nexwatch_decoder_feed_internal(level, duration, protocol->encoded_data)) {
protocol_nexwatch_decoder_save(protocol->data, protocol->encoded_data);
result = true;
return result;
}
if(protocol_nexwatch_decoder_feed_internal(
!level, duration, protocol->negative_encoded_data)) {
protocol_nexwatch_decoder_save(protocol->data, protocol->negative_encoded_data);
result = true;
return result;
}
}
if(duration > (NEXWATCH_US_PER_BIT / 4)) {
// Try to decode wrong phase synced data
if(level) {
duration += 120;
} else {
if(duration > 120) {
duration -= 120;
}
}
if(protocol_nexwatch_decoder_feed_internal(
level, duration, protocol->corrupted_encoded_data)) {
protocol_nexwatch_decoder_save(protocol->data, protocol->corrupted_encoded_data);
result = true;
return result;
}
if(protocol_nexwatch_decoder_feed_internal(
!level, duration, protocol->corrupted_negative_encoded_data)) {
protocol_nexwatch_decoder_save(
protocol->data, protocol->corrupted_negative_encoded_data);
result = true;
return result;
}
}
return result;
};
bool protocol_nexwatch_encoder_start(ProtocolNexwatch* protocol) {
memset(protocol->encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE);
*(uint32_t*)&protocol->encoded_data[0] = 0b00000000000000000000000001010110;
bit_lib_copy_bits(protocol->encoded_data, 32, 32, protocol->data, 0);
bit_lib_copy_bits(protocol->encoded_data, 64, 32, protocol->data, 32);
protocol->encoder.last_bit =
bit_lib_get_bit(protocol->encoded_data, NEXWATCH_ENCODED_BIT_SIZE - 1);
protocol->encoder.data_index = 0;
protocol->encoder.current_polarity = true;
protocol->encoder.pulse_phase = true;
protocol->encoder.bit_clock_index = 0;
return true;
};
LevelDuration protocol_nexwatch_encoder_yield(ProtocolNexwatch* protocol) {
LevelDuration level_duration;
ProtocolNexwatchEncoder* encoder = &protocol->encoder;
if(encoder->pulse_phase) {
level_duration = level_duration_make(encoder->current_polarity, 1);
encoder->pulse_phase = false;
} else {
level_duration = level_duration_make(!encoder->current_polarity, 1);
encoder->pulse_phase = true;
encoder->bit_clock_index++;
if(encoder->bit_clock_index >= NEXWATCH_ENCODER_PULSES_PER_BIT) {
encoder->bit_clock_index = 0;
bool current_bit = bit_lib_get_bit(protocol->encoded_data, encoder->data_index);
if(current_bit != encoder->last_bit) {
encoder->current_polarity = !encoder->current_polarity;
}
encoder->last_bit = current_bit;
bit_lib_increment_index(encoder->data_index, NEXWATCH_ENCODED_BIT_SIZE);
}
}
return level_duration;
};
void protocol_nexwatch_render_data(ProtocolNexwatch* protocol, FuriString* result) {
uint32_t id = 0;
uint32_t scrambled = bit_lib_get_bits_32(protocol->data, 8, 32);
protocol_nexwatch_descramble(&id, &scrambled);
uint8_t m_idx;
uint8_t mode = bit_lib_get_bits(protocol->data, 40, 4);
uint8_t parity = bit_lib_get_bits(protocol->data, 44, 4);
uint8_t chk = bit_lib_get_bits(protocol->data, 48, 8);
for(m_idx = 0; m_idx < 3; m_idx++) {
magic_items[m_idx].chk = protocol_nexwatch_checksum(magic_items[m_idx].magic, id, parity);
if(magic_items[m_idx].chk == chk) {
break;
}
}
furi_string_printf(result, "ID: %lu, M:%u\r\nType: %s\r\n", id, mode, magic_items[m_idx].desc);
}
bool protocol_nexwatch_write_data(ProtocolNexwatch* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
protocol_nexwatch_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_MODULATION_PSK1 | LFRFID_T5577_BITRATE_RF_32 |
(3 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 32);
request->t5577.blocks_to_write = 4;
result = true;
}
return result;
};
const ProtocolBase protocol_nexwatch = {
.name = "Nexwatch",
.manufacturer = "Honeywell",
.data_size = NEXWATCH_DECODED_DATA_SIZE,
.features = LFRFIDFeaturePSK,
.validate_count = 6,
.alloc = (ProtocolAlloc)protocol_nexwatch_alloc,
.free = (ProtocolFree)protocol_nexwatch_free,
.get_data = (ProtocolGetData)protocol_nexwatch_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_nexwatch_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_nexwatch_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_nexwatch_encoder_start,
.yield = (ProtocolEncoderYield)protocol_nexwatch_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_nexwatch_render_data,
.render_brief_data = (ProtocolRenderData)protocol_nexwatch_render_data,
.write_data = (ProtocolWriteData)protocol_nexwatch_write_data,
};