unleashed-firmware/applications/system/snake_game/snake_game.c

409 lines
12 KiB
C

#include <furi.h>
#include <gui/gui.h>
#include <input/input.h>
#include <stdlib.h>
#include <dolphin/dolphin.h>
#include <notification/notification.h>
#include <notification/notification_messages.h>
typedef struct {
// +-----x
// |
// |
// y
uint8_t x;
uint8_t y;
} Point;
typedef enum {
GameStateLife,
// https://melmagazine.com/en-us/story/snake-nokia-6110-oral-history-taneli-armanto
// Armanto: While testing the early versions of the game, I noticed it was hard
// to control the snake upon getting close to and edge but not crashing — especially
// in the highest speed levels. I wanted the highest level to be as fast as I could
// possibly make the device "run," but on the other hand, I wanted to be friendly
// and help the player manage that level. Otherwise it might not be fun to play. So
// I implemented a little delay. A few milliseconds of extra time right before
// the player crashes, during which she can still change the directions. And if
// she does, the game continues.
GameStateLastChance,
GameStateGameOver,
} GameState;
// Note: do not change without purpose. Current values are used in smart
// orthogonality calculation in `snake_game_get_turn_snake`.
typedef enum {
DirectionUp,
DirectionRight,
DirectionDown,
DirectionLeft,
} Direction;
#define MAX_SNAKE_LEN 128 * 64 / 4
typedef struct {
Point points[MAX_SNAKE_LEN];
uint16_t len;
Direction currentMovement;
Direction nextMovement; // if backward of currentMovement, ignore
Point fruit;
GameState state;
FuriMutex* mutex;
} SnakeState;
typedef enum {
EventTypeTick,
EventTypeKey,
} EventType;
typedef struct {
EventType type;
InputEvent input;
} SnakeEvent;
const NotificationSequence sequence_fail = {
&message_vibro_on,
&message_note_ds4,
&message_delay_10,
&message_sound_off,
&message_delay_10,
&message_note_ds4,
&message_delay_10,
&message_sound_off,
&message_delay_10,
&message_note_ds4,
&message_delay_10,
&message_sound_off,
&message_delay_10,
&message_vibro_off,
NULL,
};
const NotificationSequence sequence_eat = {
&message_note_c7,
&message_delay_50,
&message_sound_off,
NULL,
};
static void snake_game_render_callback(Canvas* const canvas, void* ctx) {
furi_assert(ctx);
const SnakeState* snake_state = ctx;
furi_mutex_acquire(snake_state->mutex, FuriWaitForever);
// Frame
canvas_draw_frame(canvas, 0, 0, 128, 64);
// Fruit
Point f = snake_state->fruit;
f.x = f.x * 4 + 1;
f.y = f.y * 4 + 1;
canvas_draw_rframe(canvas, f.x, f.y, 6, 6, 2);
// Snake
for(uint16_t i = 0; i < snake_state->len; i++) {
Point p = snake_state->points[i];
p.x = p.x * 4 + 2;
p.y = p.y * 4 + 2;
canvas_draw_box(canvas, p.x, p.y, 4, 4);
}
// Game Over banner
if(snake_state->state == GameStateGameOver) {
// Screen is 128x64 px
canvas_set_color(canvas, ColorWhite);
canvas_draw_box(canvas, 34, 20, 62, 24);
canvas_set_color(canvas, ColorBlack);
canvas_draw_frame(canvas, 34, 20, 62, 24);
canvas_set_font(canvas, FontPrimary);
canvas_draw_str(canvas, 37, 31, "Game Over");
canvas_set_font(canvas, FontSecondary);
char buffer[12];
snprintf(buffer, sizeof(buffer), "Score: %u", snake_state->len - 7U);
canvas_draw_str_aligned(canvas, 64, 41, AlignCenter, AlignBottom, buffer);
}
furi_mutex_release(snake_state->mutex);
}
static void snake_game_input_callback(InputEvent* input_event, FuriMessageQueue* event_queue) {
furi_assert(event_queue);
SnakeEvent event = {.type = EventTypeKey, .input = *input_event};
furi_message_queue_put(event_queue, &event, FuriWaitForever);
}
static void snake_game_update_timer_callback(FuriMessageQueue* event_queue) {
furi_assert(event_queue);
SnakeEvent event = {.type = EventTypeTick};
furi_message_queue_put(event_queue, &event, 0);
}
static void snake_game_init_game(SnakeState* const snake_state) {
Point p[] = {{8, 6}, {7, 6}, {6, 6}, {5, 6}, {4, 6}, {3, 6}, {2, 6}};
memcpy(snake_state->points, p, sizeof(p)); //-V1086
snake_state->len = 7;
snake_state->currentMovement = DirectionRight;
snake_state->nextMovement = DirectionRight;
Point f = {18, 6};
snake_state->fruit = f;
snake_state->state = GameStateLife;
}
static Point snake_game_get_new_fruit(SnakeState const* const snake_state) {
// 1 bit for each point on the playing field where the snake can turn
// and where the fruit can appear
uint16_t buffer[8];
memset(buffer, 0, sizeof(buffer));
uint8_t empty = 8 * 16;
for(uint16_t i = 0; i < snake_state->len; i++) {
Point p = snake_state->points[i];
if(p.x % 2 != 0 || p.y % 2 != 0) {
continue;
}
p.x /= 2;
p.y /= 2;
buffer[p.y] |= 1 << p.x;
empty--;
}
// Bit set if snake use that playing field
uint16_t newFruit = rand() % empty;
// Skip random number of _empty_ fields
for(uint8_t y = 0; y < 8; y++) {
for(uint16_t x = 0, mask = 1; x < 16; x += 1, mask <<= 1) {
if((buffer[y] & mask) == 0) {
if(newFruit == 0) {
Point p = {
.x = x * 2,
.y = y * 2,
};
return p;
}
newFruit--;
}
}
}
// We will never be here
Point p = {0, 0};
return p;
}
static bool snake_game_collision_with_frame(Point const next_step) {
// if x == 0 && currentMovement == left then x - 1 == 255 ,
// so check only x > right border
return next_step.x > 30 || next_step.y > 14;
}
static bool
snake_game_collision_with_tail(SnakeState const* const snake_state, Point const next_step) {
for(uint16_t i = 0; i < snake_state->len; i++) {
Point p = snake_state->points[i];
if(p.x == next_step.x && p.y == next_step.y) {
return true;
}
}
return false;
}
static Direction snake_game_get_turn_snake(SnakeState const* const snake_state) {
// Sum of two `Direction` lies between 0 and 6, odd values indicate orthogonality.
bool is_orthogonal = (snake_state->currentMovement + snake_state->nextMovement) % 2 == 1;
return is_orthogonal ? snake_state->nextMovement : snake_state->currentMovement;
}
static Point snake_game_get_next_step(SnakeState const* const snake_state) {
Point next_step = snake_state->points[0];
switch(snake_state->currentMovement) {
// +-----x
// |
// |
// y
case DirectionUp:
next_step.y--;
break;
case DirectionRight:
next_step.x++;
break;
case DirectionDown:
next_step.y++;
break;
case DirectionLeft:
next_step.x--;
break;
}
return next_step;
}
static void snake_game_move_snake(SnakeState* const snake_state, Point const next_step) {
memmove(snake_state->points + 1, snake_state->points, snake_state->len * sizeof(Point));
snake_state->points[0] = next_step;
}
static void
snake_game_process_game_step(SnakeState* const snake_state, NotificationApp* notification) {
if(snake_state->state == GameStateGameOver) {
return;
}
snake_state->currentMovement = snake_game_get_turn_snake(snake_state);
Point next_step = snake_game_get_next_step(snake_state);
bool crush = snake_game_collision_with_frame(next_step);
if(crush) {
if(snake_state->state == GameStateLife) {
snake_state->state = GameStateLastChance;
return;
} else if(snake_state->state == GameStateLastChance) {
snake_state->state = GameStateGameOver;
notification_message_block(notification, &sequence_fail);
return;
}
} else {
if(snake_state->state == GameStateLastChance) {
snake_state->state = GameStateLife;
}
}
crush = snake_game_collision_with_tail(snake_state, next_step);
if(crush) {
snake_state->state = GameStateGameOver;
notification_message_block(notification, &sequence_fail);
return;
}
bool eatFruit = (next_step.x == snake_state->fruit.x) && (next_step.y == snake_state->fruit.y);
if(eatFruit) {
snake_state->len++;
if(snake_state->len >= MAX_SNAKE_LEN) {
snake_state->state = GameStateGameOver;
notification_message_block(notification, &sequence_fail);
return;
}
}
snake_game_move_snake(snake_state, next_step);
if(eatFruit) {
snake_state->fruit = snake_game_get_new_fruit(snake_state);
notification_message(notification, &sequence_eat);
}
}
int32_t snake_game_app(void* p) {
UNUSED(p);
FuriMessageQueue* event_queue = furi_message_queue_alloc(8, sizeof(SnakeEvent));
SnakeState* snake_state = malloc(sizeof(SnakeState));
snake_game_init_game(snake_state);
snake_state->mutex = furi_mutex_alloc(FuriMutexTypeNormal);
if(!snake_state->mutex) {
FURI_LOG_E("SnakeGame", "cannot create mutex\r\n");
furi_message_queue_free(event_queue);
free(snake_state);
return 255;
}
ViewPort* view_port = view_port_alloc();
view_port_draw_callback_set(view_port, snake_game_render_callback, snake_state);
view_port_input_callback_set(view_port, snake_game_input_callback, event_queue);
FuriTimer* timer =
furi_timer_alloc(snake_game_update_timer_callback, FuriTimerTypePeriodic, event_queue);
furi_timer_start(timer, furi_kernel_get_tick_frequency() / 4);
// Open GUI and register view_port
Gui* gui = furi_record_open(RECORD_GUI);
gui_add_view_port(gui, view_port, GuiLayerFullscreen);
NotificationApp* notification = furi_record_open(RECORD_NOTIFICATION);
notification_message_block(notification, &sequence_display_backlight_enforce_on);
dolphin_deed(DolphinDeedPluginGameStart);
SnakeEvent event;
for(bool processing = true; processing;) {
FuriStatus event_status = furi_message_queue_get(event_queue, &event, 100);
furi_mutex_acquire(snake_state->mutex, FuriWaitForever);
if(event_status == FuriStatusOk) {
// press events
if(event.type == EventTypeKey) {
if(event.input.type == InputTypePress) {
switch(event.input.key) {
case InputKeyUp:
snake_state->nextMovement = DirectionUp;
break;
case InputKeyDown:
snake_state->nextMovement = DirectionDown;
break;
case InputKeyRight:
snake_state->nextMovement = DirectionRight;
break;
case InputKeyLeft:
snake_state->nextMovement = DirectionLeft;
break;
case InputKeyOk:
if(snake_state->state == GameStateGameOver) {
snake_game_init_game(snake_state);
}
break;
case InputKeyBack:
processing = false;
break;
default:
break;
}
}
} else if(event.type == EventTypeTick) {
snake_game_process_game_step(snake_state, notification);
}
} else {
// event timeout
}
furi_mutex_release(snake_state->mutex);
view_port_update(view_port);
}
// Return backlight to normal state
notification_message(notification, &sequence_display_backlight_enforce_auto);
furi_timer_free(timer);
view_port_enabled_set(view_port, false);
gui_remove_view_port(gui, view_port);
furi_record_close(RECORD_GUI);
furi_record_close(RECORD_NOTIFICATION);
view_port_free(view_port);
furi_message_queue_free(event_queue);
furi_mutex_free(snake_state->mutex);
free(snake_state);
return 0;
}