unleashed-firmware/lib/infrared/encoder_decoder/common/infrared_common_encoder.c
Albert Kharisov 052237f8c9
[FL-2279] IR doxygen, rename irda -> infrared (#1010)
* IR: Doxygen docs, some rename
* Rename irda -> infrared
* Rollback collateral renames

Co-authored-by: あく <alleteam@gmail.com>
2022-02-25 18:22:58 +03:00

183 lines
6 KiB
C

#include "furi/check.h"
#include "infrared.h"
#include "infrared_common_i.h"
#include <stdbool.h>
#include <furi.h>
#include "infrared_i.h"
#include <stdint.h>
static InfraredStatus
infrared_common_encode_bits(InfraredCommonEncoder* encoder, uint32_t* duration, bool* level) {
InfraredStatus status = encoder->protocol->encode(encoder, duration, level);
furi_assert(status == InfraredStatusOk);
++encoder->timings_encoded;
encoder->timings_sum += *duration;
if((encoder->bits_encoded == encoder->bits_to_encode) && *level) {
status = InfraredStatusDone;
}
return status;
}
/*
*
* 3:
* even_timing = 0
* level = 0 ^ 1 = 1
* 4:
* even_timing = 1
* level = 1 ^ 1 = 0
* ++timing;
*
*
* 0 1 2 | 3 4 |
* _____-------_____---___
*/
InfraredStatus infrared_common_encode_manchester(
InfraredCommonEncoder* encoder,
uint32_t* duration,
bool* level) {
furi_assert(encoder);
furi_assert(duration);
furi_assert(level);
const InfraredTimings* timings = &encoder->protocol->timings;
uint8_t index = encoder->bits_encoded / 8;
uint8_t shift = encoder->bits_encoded % 8; // LSB first
bool logic_value = !!(encoder->data[index] & (0x01 << shift));
bool even_timing = !(encoder->timings_encoded % 2);
*level = even_timing ^ logic_value;
*duration = timings->bit1_mark;
if(even_timing)
++encoder->bits_encoded;
else if(*level && (encoder->bits_encoded + 1 == encoder->bits_to_encode))
++encoder->bits_encoded; /* don't encode last space */
return InfraredStatusOk;
}
InfraredStatus
infrared_common_encode_pdwm(InfraredCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
furi_assert(duration);
furi_assert(level);
const InfraredTimings* timings = &encoder->protocol->timings;
uint8_t index = encoder->bits_encoded / 8;
uint8_t shift = encoder->bits_encoded % 8; // LSB first
bool logic_value = !!(encoder->data[index] & (0x01 << shift));
bool pwm = timings->bit1_space == timings->bit0_space;
if(encoder->timings_encoded % 2) { /* start encoding from space */
*duration = logic_value ? timings->bit1_mark : timings->bit0_mark;
*level = true;
if(pwm) ++encoder->bits_encoded;
} else {
*duration = logic_value ? timings->bit1_space : timings->bit0_space;
*level = false;
if(!pwm) ++encoder->bits_encoded;
}
return InfraredStatusOk;
}
InfraredStatus
infrared_common_encode(InfraredCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
furi_assert(duration);
furi_assert(level);
InfraredStatus status = InfraredStatusOk;
const InfraredTimings* timings = &encoder->protocol->timings;
switch(encoder->state) {
case InfraredCommonEncoderStateSilence:
*duration = encoder->protocol->timings.silence_time;
*level = false;
status = InfraredStatusOk;
encoder->state = InfraredCommonEncoderStatePreamble;
++encoder->timings_encoded;
encoder->timings_sum = 0;
break;
case InfraredCommonEncoderStatePreamble:
if(timings->preamble_mark) {
if(encoder->timings_encoded == 1) {
*duration = timings->preamble_mark;
*level = true;
} else {
*duration = timings->preamble_space;
*level = false;
encoder->state = InfraredCommonEncoderStateEncode;
}
++encoder->timings_encoded;
encoder->timings_sum += *duration;
break;
} else {
encoder->state = InfraredCommonEncoderStateEncode;
}
/* FALLTHROUGH */
case InfraredCommonEncoderStateEncode:
status = infrared_common_encode_bits(encoder, duration, level);
if(status == InfraredStatusDone) {
if(encoder->protocol->encode_repeat) {
encoder->state = InfraredCommonEncoderStateEncodeRepeat;
} else {
encoder->timings_encoded = 0;
encoder->timings_sum = 0;
encoder->bits_encoded = 0;
encoder->switch_detect = 0;
encoder->state = InfraredCommonEncoderStateSilence;
}
}
break;
case InfraredCommonEncoderStateEncodeRepeat:
status = encoder->protocol->encode_repeat(encoder, duration, level);
break;
}
return status;
}
void* infrared_common_encoder_alloc(const InfraredCommonProtocolSpec* protocol) {
furi_assert(protocol);
if(protocol->decode == infrared_common_decode_pdwm) {
furi_assert(
(protocol->timings.bit1_mark == protocol->timings.bit0_mark) ^
(protocol->timings.bit1_space == protocol->timings.bit0_space));
}
/* protocol->databit_len[0] has to contain biggest value of bits that can be decoded */
for(int i = 1; i < COUNT_OF(protocol->databit_len); ++i) {
furi_assert(protocol->databit_len[i] <= protocol->databit_len[0]);
}
uint32_t alloc_size = sizeof(InfraredCommonDecoder) + protocol->databit_len[0] / 8 +
!!(protocol->databit_len[0] % 8);
InfraredCommonEncoder* encoder = malloc(alloc_size);
memset(encoder, 0, alloc_size);
encoder->protocol = protocol;
return encoder;
}
void infrared_common_encoder_free(InfraredCommonEncoder* encoder) {
furi_assert(encoder);
free(encoder);
}
void infrared_common_encoder_reset(InfraredCommonEncoder* encoder) {
furi_assert(encoder);
encoder->timings_encoded = 0;
encoder->timings_sum = 0;
encoder->bits_encoded = 0;
encoder->state = InfraredCommonEncoderStateSilence;
encoder->switch_detect = 0;
uint8_t max_databit_len = 0;
for(int i = 0; i < COUNT_OF(encoder->protocol->databit_len); ++i) {
max_databit_len = MAX(max_databit_len, encoder->protocol->databit_len[i]);
}
uint8_t bytes_to_clear = max_databit_len / 8 + !!(max_databit_len % 8);
memset(encoder->data, 0, bytes_to_clear);
}