unleashed-firmware/firmware/targets/f6/furi-hal/furi-hal-subghz.c
Skorpionm 4418e73b26
[FL-1912, FL-1939] Sub-GHz frequency analyzer and add new protocol ()
* ToolBox: add manchester-decoder and manchester-encoder
* SubGhz: add new FM config cc1101
* Subghz: add protocol Kia
* SubGhz: fix receiving the last packet Nero Radio
* SubGhz: app protocol CAME Twin (TW2EE/TW4EE)
* SubGhz: add protocol CAME Atomo (AT03EV/ AT04EV)
* F7: sync with F6
* SubGhz: add frequency analyzer
* SubGhz: remove space from file name 
* SubGhz: frequency analyzer add filter and fix view
* [FL-1939] GubGhz: Frequency analyzer redesign
* SubGhz: fix incorrect subghz api call sequence in frequency analyzer worker

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2021-10-10 17:35:10 +03:00

834 lines
30 KiB
C

#include "furi-hal-subghz.h"
#include "furi-hal-version.h"
#include <furi-hal-gpio.h>
#include <furi-hal-spi.h>
#include <furi-hal-interrupt.h>
#include <furi-hal-resources.h>
#include <furi.h>
#include <cc1101.h>
#include <stdio.h>
static volatile SubGhzState furi_hal_subghz_state = SubGhzStateInit;
static volatile SubGhzRegulation furi_hal_subghz_regulation = SubGhzRegulationTxRx;
static const uint8_t furi_hal_subghz_preset_ook_270khz_async_regs[][2] = {
// https://e2e.ti.com/support/wireless-connectivity/sub-1-ghz-group/sub-1-ghz/f/sub-1-ghz-forum/382066/cc1101---don-t-know-the-correct-registers-configuration
/* GPIO GD0 */
{CC1101_IOCFG0, 0x0D}, // GD0 as async serial data output/input
/* FIFO and internals */
{CC1101_FIFOTHR, 0x47}, // The only important bit is ADC_RETENTION, FIFO Tx=33 Rx=32
/* Packet engine */
{CC1101_PKTCTRL0, 0x32}, // Async, continious, no whitening
/* Frequency Synthesizer Control */
{CC1101_FSCTRL1, 0x06}, // IF = (26*10^6) / (2^10) * 0x06 = 152343.75Hz
// Modem Configuration
{CC1101_MDMCFG0, 0x00}, // Channel spacing is 25kHz
{CC1101_MDMCFG1, 0x00}, // Channel spacing is 25kHz
{CC1101_MDMCFG2, 0x30}, // Format ASK/OOK, No preamble/sync
{CC1101_MDMCFG3, 0x32}, // Data rate is 3.79372 kBaud
{CC1101_MDMCFG4, 0x67}, // Rx BW filter is 270.833333kHz
/* Main Radio Control State Machine */
{CC1101_MCSM0, 0x18}, // Autocalibrate on idle-to-rx/tx, PO_TIMEOUT is 64 cycles(149-155us)
/* Frequency Offset Compensation Configuration */
{CC1101_FOCCFG,
0x18}, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off
/* Automatic Gain Control */
{CC1101_AGCCTRL0,
0x40}, // 01 - Low hysteresis, small asymmetric dead zone, medium gain; 00 - 8 samples agc; 00 - Normal AGC, 00 - 4dB boundary
{CC1101_AGCCTRL1,
0x00}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET
{CC1101_AGCCTRL2, 0x03}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 011 - MAIN_TARGET 24 dB
/* Wake on radio and timeouts control */
{CC1101_WORCTRL, 0xFB}, // WOR_RES is 2^15 periods (0.91 - 0.94 s) 16.5 - 17.2 hours
/* Frontend configuration */
{CC1101_FREND0, 0x11}, // Adjusts current TX LO buffer + high is PATABLE[1]
{CC1101_FREND1, 0xB6}, //
/* Frequency Synthesizer Calibration, valid for 433.92 */
{CC1101_FSCAL3, 0xE9},
{CC1101_FSCAL2, 0x2A},
{CC1101_FSCAL1, 0x00},
{CC1101_FSCAL0, 0x1F},
/* Magic f4ckery */
{CC1101_TEST2, 0x81}, // FIFOTHR ADC_RETENTION=1 matched value
{CC1101_TEST1, 0x35}, // FIFOTHR ADC_RETENTION=1 matched value
{CC1101_TEST0, 0x09}, // VCO selection calibration stage is disabled
/* End */
{0, 0},
};
static const uint8_t furi_hal_subghz_preset_ook_650khz_async_regs[][2] = {
// https://e2e.ti.com/support/wireless-connectivity/sub-1-ghz-group/sub-1-ghz/f/sub-1-ghz-forum/382066/cc1101---don-t-know-the-correct-registers-configuration
/* GPIO GD0 */
{CC1101_IOCFG0, 0x0D}, // GD0 as async serial data output/input
/* FIFO and internals */
{CC1101_FIFOTHR, 0x07}, // The only important bit is ADC_RETENTION
/* Packet engine */
{CC1101_PKTCTRL0, 0x32}, // Async, continious, no whitening
/* Frequency Synthesizer Control */
{CC1101_FSCTRL1, 0x06}, // IF = (26*10^6) / (2^10) * 0x06 = 152343.75Hz
// Modem Configuration
{CC1101_MDMCFG0, 0x00}, // Channel spacing is 25kHz
{CC1101_MDMCFG1, 0x00}, // Channel spacing is 25kHz
{CC1101_MDMCFG2, 0x30}, // Format ASK/OOK, No preamble/sync
{CC1101_MDMCFG3, 0x32}, // Data rate is 3.79372 kBaud
{CC1101_MDMCFG4, 0x17}, // Rx BW filter is 650.000kHz
/* Main Radio Control State Machine */
{CC1101_MCSM0, 0x18}, // Autocalibrate on idle-to-rx/tx, PO_TIMEOUT is 64 cycles(149-155us)
/* Frequency Offset Compensation Configuration */
{CC1101_FOCCFG,
0x18}, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off
/* Automatic Gain Control */
// {CC1101_AGCTRL0,0x40}, // 01 - Low hysteresis, small asymmetric dead zone, medium gain; 00 - 8 samples agc; 00 - Normal AGC, 00 - 4dB boundary
// {CC1101_AGCTRL1,0x00}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET
// {CC1101_AGCCTRL2, 0x03}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 011 - MAIN_TARGET 24 dB
//MAGN_TARGET for RX filter BW =< 100 kHz is 0x3. For higher RX filter BW's MAGN_TARGET is 0x7.
{CC1101_AGCCTRL0,
0x91}, // 10 - Medium hysteresis, medium asymmetric dead zone, medium gain ; 01 - 16 samples agc; 00 - Normal AGC, 01 - 8dB boundary
{CC1101_AGCCTRL1,
0x0}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET
{CC1101_AGCCTRL2, 0x07}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAIN_TARGET 42 dB
/* Wake on radio and timeouts control */
{CC1101_WORCTRL, 0xFB}, // WOR_RES is 2^15 periods (0.91 - 0.94 s) 16.5 - 17.2 hours
/* Frontend configuration */
{CC1101_FREND0, 0x11}, // Adjusts current TX LO buffer + high is PATABLE[1]
{CC1101_FREND1, 0xB6}, //
/* Frequency Synthesizer Calibration, valid for 433.92 */
{CC1101_FSCAL3, 0xE9},
{CC1101_FSCAL2, 0x2A},
{CC1101_FSCAL1, 0x00},
{CC1101_FSCAL0, 0x1F},
/* Magic f4ckery */
{CC1101_TEST2, 0x88},
{CC1101_TEST1, 0x31},
{CC1101_TEST0, 0x09}, // VCO selection calibration stage is disabled
/* End */
{0, 0},
};
static const uint8_t furi_hal_subghz_preset_2fsk_dev2_38khz_async_regs[][2] = {
/* GPIO GD0 */
{CC1101_IOCFG0, 0x0D}, // GD0 as async serial data output/input
/* Frequency Synthesizer Control */
{CC1101_FSCTRL1, 0x06}, // IF = (26*10^6) / (2^10) * 0x06 = 152343.75Hz
/* Packet engine */
{CC1101_PKTCTRL0, 0x32}, // Async, continious, no whitening
{CC1101_PKTCTRL1, 0x04},
// // Modem Configuration
{CC1101_MDMCFG0, 0x00},
{CC1101_MDMCFG1, 0x02},
{CC1101_MDMCFG2, 0x04}, // Format 2-FSK/FM, No preamble/sync, Disable (current optimized)
{CC1101_MDMCFG3, 0x83}, // Data rate is 4.79794 kBaud
{CC1101_MDMCFG4, 0x67}, //Rx BW filter is 270.833333 kHz
{CC1101_DEVIATN, 0x04}, //Deviation 2.380371 kHz
/* Main Radio Control State Machine */
{CC1101_MCSM0, 0x18}, // Autocalibrate on idle-to-rx/tx, PO_TIMEOUT is 64 cycles(149-155us)
/* Frequency Offset Compensation Configuration */
{CC1101_FOCCFG,
0x16}, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off
/* Automatic Gain Control */
{CC1101_AGCCTRL0,
0x91}, //10 - Medium hysteresis, medium asymmetric dead zone, medium gain ; 01 - 16 samples agc; 00 - Normal AGC, 01 - 8dB boundary
{CC1101_AGCCTRL1,
0x00}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET
{CC1101_AGCCTRL2, 0x07}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAIN_TARGET 42 dB
/* Wake on radio and timeouts control */
{CC1101_WORCTRL, 0xFB}, // WOR_RES is 2^15 periods (0.91 - 0.94 s) 16.5 - 17.2 hours
/* Frontend configuration */
{CC1101_FREND0, 0x10}, // Adjusts current TX LO buffer
{CC1101_FREND1, 0x56},
/* Frequency Synthesizer Calibration, valid for 433.92 */
{CC1101_FSCAL3, 0xE9},
{CC1101_FSCAL2, 0x2A},
{CC1101_FSCAL1, 0x00},
{CC1101_FSCAL0, 0x1F},
/* Magic f4ckery */
{CC1101_TEST2, 0x81}, // FIFOTHR ADC_RETENTION=1 matched value
{CC1101_TEST1, 0x35}, // FIFOTHR ADC_RETENTION=1 matched value
{CC1101_TEST0, 0x09}, // VCO selection calibration stage is disabled
/* End */
{0, 0},
};
static const uint8_t furi_hal_subghz_preset_2fsk_dev4_76khz_async_regs[][2] = {
/* GPIO GD0 */
{CC1101_IOCFG0, 0x0D}, // GD0 as async serial data output/input
/* Frequency Synthesizer Control */
{CC1101_FSCTRL1, 0x06}, // IF = (26*10^6) / (2^10) * 0x06 = 152343.75Hz
/* Packet engine */
{CC1101_PKTCTRL0, 0x32}, // Async, continious, no whitening
{CC1101_PKTCTRL1, 0x04},
// // Modem Configuration
{CC1101_MDMCFG0, 0x00},
{CC1101_MDMCFG1, 0x02},
{CC1101_MDMCFG2, 0x04}, // Format 2-FSK/FM, No preamble/sync, Disable (current optimized)
{CC1101_MDMCFG3, 0x83}, // Data rate is 4.79794 kBaud
{CC1101_MDMCFG4, 0x67}, //Rx BW filter is 270.833333 kHz
{CC1101_DEVIATN, 0x14}, //Deviation 4.760742 kHz
/* Main Radio Control State Machine */
{CC1101_MCSM0, 0x18}, // Autocalibrate on idle-to-rx/tx, PO_TIMEOUT is 64 cycles(149-155us)
/* Frequency Offset Compensation Configuration */
{CC1101_FOCCFG,
0x16}, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off
/* Automatic Gain Control */
{CC1101_AGCCTRL0,
0x91}, //10 - Medium hysteresis, medium asymmetric dead zone, medium gain ; 01 - 16 samples agc; 00 - Normal AGC, 01 - 8dB boundary
{CC1101_AGCCTRL1,
0x00}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET
{CC1101_AGCCTRL2, 0x07}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAIN_TARGET 42 dB
/* Wake on radio and timeouts control */
{CC1101_WORCTRL, 0xFB}, // WOR_RES is 2^15 periods (0.91 - 0.94 s) 16.5 - 17.2 hours
/* Frontend configuration */
{CC1101_FREND0, 0x10}, // Adjusts current TX LO buffer
{CC1101_FREND1, 0x56},
/* Frequency Synthesizer Calibration, valid for 433.92 */
{CC1101_FSCAL3, 0xE9},
{CC1101_FSCAL2, 0x2A},
{CC1101_FSCAL1, 0x00},
{CC1101_FSCAL0, 0x1F},
/* Magic f4ckery */
{CC1101_TEST2, 0x81}, // FIFOTHR ADC_RETENTION=1 matched value
{CC1101_TEST1, 0x35}, // FIFOTHR ADC_RETENTION=1 matched value
{CC1101_TEST0, 0x09}, // VCO selection calibration stage is disabled
/* End */
{0, 0},
};
static const uint8_t furi_hal_subghz_preset_ook_async_patable[8] = {
0x00,
0xC0, // 10dBm 0xC0, 7dBm 0xC8, 5dBm 0x84, 0dBm 0x60, -10dBm 0x34, -15dBm 0x1D, -20dBm 0x0E, -30dBm 0x12
0x00,
0x00,
0x00,
0x00,
0x00,
0x00};
static const uint8_t furi_hal_subghz_preset_2fsk_async_patable[8] = {
0xC0, // 10dBm 0xC0, 7dBm 0xC8, 5dBm 0x84, 0dBm 0x60, -10dBm 0x34, -15dBm 0x1D, -20dBm 0x0E, -30dBm 0x12
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00
};
void furi_hal_subghz_init() {
furi_assert(furi_hal_subghz_state == SubGhzStateInit);
furi_hal_subghz_state = SubGhzStateIdle;
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
hal_gpio_init(&FURI_HAL_SUBGHZ_TX_GPIO, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
#endif
// Reset
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_reset(device);
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance);
// Prepare GD0 for power on self test
hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow);
// GD0 low
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW);
while(hal_gpio_read(&gpio_cc1101_g0) != false)
;
// GD0 high
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV);
while(hal_gpio_read(&gpio_cc1101_g0) != true)
;
// Reset GD0 to floating state
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
// RF switches
hal_gpio_init(&gpio_rf_sw_0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW);
// Go to sleep
cc1101_shutdown(device);
furi_hal_spi_device_return(device);
FURI_LOG_I("FuriHalSubGhz", "Init OK");
}
void furi_hal_subghz_sleep() {
furi_assert(furi_hal_subghz_state == SubGhzStateIdle);
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
cc1101_switch_to_idle(device);
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_shutdown(device);
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_dump_state() {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
printf(
"[furi_hal_subghz] cc1101 chip %d, version %d\r\n",
cc1101_get_partnumber(device),
cc1101_get_version(device));
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_load_preset(FuriHalSubGhzPreset preset) {
if(preset == FuriHalSubGhzPresetOok650Async) {
furi_hal_subghz_load_registers(furi_hal_subghz_preset_ook_650khz_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_ook_async_patable);
} else if(preset == FuriHalSubGhzPresetOok270Async) {
furi_hal_subghz_load_registers(furi_hal_subghz_preset_ook_270khz_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_ook_async_patable);
} else if(preset == FuriHalSubGhzPreset2FSKDev238Async) {
furi_hal_subghz_load_registers(furi_hal_subghz_preset_2fsk_dev2_38khz_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_2fsk_async_patable);
} else if(preset == FuriHalSubGhzPreset2FSKDev476Async) {
furi_hal_subghz_load_registers(furi_hal_subghz_preset_2fsk_dev4_76khz_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_2fsk_async_patable);
} else {
furi_crash(NULL);
}
}
void furi_hal_subghz_load_registers(const uint8_t data[][2]) {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
cc1101_reset(device);
uint32_t i = 0;
while(data[i][0]) {
cc1101_write_reg(device, data[i][0], data[i][1]);
i++;
}
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_load_patable(const uint8_t data[8]) {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
cc1101_set_pa_table(device, data);
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_write_packet(const uint8_t* data, uint8_t size) {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
cc1101_flush_tx(device);
cc1101_write_fifo(device, data, size);
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_flush_rx() {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
cc1101_flush_rx(device);
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_read_packet(uint8_t* data, uint8_t* size) {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
cc1101_read_fifo(device, data, size);
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_shutdown() {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
// Reset and shutdown
cc1101_shutdown(device);
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_reset() {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_switch_to_idle(device);
cc1101_reset(device);
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_idle() {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
cc1101_switch_to_idle(device);
furi_hal_spi_device_return(device);
}
void furi_hal_subghz_rx() {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
cc1101_switch_to_rx(device);
furi_hal_spi_device_return(device);
}
bool furi_hal_subghz_tx() {
if(furi_hal_subghz_regulation != SubGhzRegulationTxRx) return false;
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
cc1101_switch_to_tx(device);
furi_hal_spi_device_return(device);
return true;
}
float furi_hal_subghz_get_rssi() {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
int32_t rssi_dec = cc1101_get_rssi(device);
furi_hal_spi_device_return(device);
float rssi = rssi_dec;
if(rssi_dec >= 128) {
rssi = ((rssi - 256.0f) / 2.0f) - 74.0f;
} else {
rssi = (rssi / 2.0f) - 74.0f;
}
return rssi;
}
bool furi_hal_subghz_is_frequency_valid(uint32_t value) {
if(!(value >= 299999755 && value <= 348000335) &&
!(value >= 386999938 && value <= 464000000) &&
!(value >= 778999847 && value <= 928000000)) {
return false;
}
return true;
}
uint32_t furi_hal_subghz_set_frequency_and_path(uint32_t value) {
value = furi_hal_subghz_set_frequency(value);
if(value >= 299999755 && value <= 348000335) {
furi_hal_subghz_set_path(FuriHalSubGhzPath315);
} else if(value >= 386999938 && value <= 464000000) {
furi_hal_subghz_set_path(FuriHalSubGhzPath433);
} else if(value >= 778999847 && value <= 928000000) {
furi_hal_subghz_set_path(FuriHalSubGhzPath868);
} else {
furi_crash(NULL);
}
return value;
}
uint32_t furi_hal_subghz_set_frequency(uint32_t value) {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
//checking regional settings
bool txrx = false;
switch(furi_hal_version_get_hw_region()) {
case FuriHalVersionRegionEuRu:
//433,05..434,79; 868,15..868,55
if(!(value >= 433050000 && value <= 434790000) &&
!(value >= 868150000 && value <= 8680550000)) {
} else {
txrx = true;
}
break;
case FuriHalVersionRegionUsCaAu:
//304,10..315,25; 433,05..434,79; 915,00..928,00
if(!(value >= 304100000 && value <= 315250000) &&
!(value >= 433050000 && value <= 434790000) &&
!(value >= 915000000 && value <= 928000000)) {
} else {
txrx = true;
}
break;
case FuriHalVersionRegionJp:
//312,00..315,25; 920,50..923,50
if(!(value >= 312000000 && value <= 315250000) &&
!(value >= 920500000 && value <= 923500000)) {
} else {
txrx = true;
}
break;
default:
txrx = true;
break;
}
if(txrx) {
furi_hal_subghz_regulation = SubGhzRegulationTxRx;
} else {
furi_hal_subghz_regulation = SubGhzRegulationOnlyRx;
}
uint32_t real_frequency = cc1101_set_frequency(device, value);
cc1101_calibrate(device);
while(true) {
CC1101Status status = cc1101_get_status(device);
if(status.STATE == CC1101StateIDLE) break;
}
furi_hal_spi_device_return(device);
return real_frequency;
}
void furi_hal_subghz_set_path(FuriHalSubGhzPath path) {
const FuriHalSpiDevice* device = furi_hal_spi_device_get(FuriHalSpiDeviceIdSubGhz);
if(path == FuriHalSubGhzPath433) {
hal_gpio_write(&gpio_rf_sw_0, 0);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV);
} else if(path == FuriHalSubGhzPath315) {
hal_gpio_write(&gpio_rf_sw_0, 1);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW);
} else if(path == FuriHalSubGhzPath868) {
hal_gpio_write(&gpio_rf_sw_0, 1);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV);
} else if(path == FuriHalSubGhzPathIsolate) {
hal_gpio_write(&gpio_rf_sw_0, 0);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW);
} else {
furi_crash(NULL);
}
furi_hal_spi_device_return(device);
}
volatile uint32_t furi_hal_subghz_capture_delta_duration = 0;
volatile FuriHalSubGhzCaptureCallback furi_hal_subghz_capture_callback = NULL;
volatile void* furi_hal_subghz_capture_callback_context = NULL;
static void furi_hal_subghz_capture_ISR() {
// Channel 1
if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
LL_TIM_ClearFlag_CC1(TIM2);
furi_hal_subghz_capture_delta_duration = LL_TIM_IC_GetCaptureCH1(TIM2);
if(furi_hal_subghz_capture_callback) {
furi_hal_subghz_capture_callback(
true,
furi_hal_subghz_capture_delta_duration,
(void*)furi_hal_subghz_capture_callback_context);
}
}
// Channel 2
if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
LL_TIM_ClearFlag_CC2(TIM2);
if(furi_hal_subghz_capture_callback) {
furi_hal_subghz_capture_callback(
false,
LL_TIM_IC_GetCaptureCH2(TIM2) - furi_hal_subghz_capture_delta_duration,
(void*)furi_hal_subghz_capture_callback_context);
}
}
}
void furi_hal_subghz_start_async_rx(FuriHalSubGhzCaptureCallback callback, void* context) {
furi_assert(furi_hal_subghz_state == SubGhzStateIdle);
furi_hal_subghz_state = SubGhzStateAsyncRx;
furi_hal_subghz_capture_callback = callback;
furi_hal_subghz_capture_callback_context = context;
hal_gpio_init_ex(
&gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
// Timer: base
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64 - 1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 0x7FFFFFFE;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV4;
LL_TIM_Init(TIM2, &TIM_InitStruct);
// Timer: advanced
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM2);
LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI2FP2);
LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
LL_TIM_EnableMasterSlaveMode(TIM2);
LL_TIM_DisableDMAReq_TRIG(TIM2);
LL_TIM_DisableIT_TRIG(TIM2);
// Timer: channel 1 indirect
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_INDIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_FALLING);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
// Timer: channel 2 direct
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV32_N8);
// ISR setup
furi_hal_interrupt_set_timer_isr(TIM2, furi_hal_subghz_capture_ISR);
NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
NVIC_EnableIRQ(TIM2_IRQn);
// Interrupts and channels
LL_TIM_EnableIT_CC1(TIM2);
LL_TIM_EnableIT_CC2(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
// Enable NVIC
NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
NVIC_EnableIRQ(TIM2_IRQn);
// Start timer
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
// Switch to RX
furi_hal_subghz_rx();
}
void furi_hal_subghz_stop_async_rx() {
furi_assert(furi_hal_subghz_state == SubGhzStateAsyncRx);
furi_hal_subghz_state = SubGhzStateIdle;
// Shutdown radio
furi_hal_subghz_idle();
LL_TIM_DeInit(TIM2);
LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_TIM2);
furi_hal_interrupt_set_timer_isr(TIM2, NULL);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
#define API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL (256)
#define API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF (API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL / 2)
#define API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME 333
typedef struct {
uint32_t* buffer;
bool flip_flop;
FuriHalSubGhzAsyncTxCallback callback;
void* callback_context;
} FuriHalSubGhzAsyncTx;
static FuriHalSubGhzAsyncTx furi_hal_subghz_async_tx = {0};
static void furi_hal_subghz_async_tx_refill(uint32_t* buffer, size_t samples) {
while(samples > 0) {
bool is_odd = samples % 2;
LevelDuration ld =
furi_hal_subghz_async_tx.callback(furi_hal_subghz_async_tx.callback_context);
if(level_duration_is_reset(ld)) {
// One more even sample required to end at low level
if(is_odd) {
*buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
buffer++;
samples--;
}
break;
} else {
// Inject guard time if level is incorrect
if(is_odd == level_duration_get_level(ld)) {
*buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
buffer++;
samples--;
}
uint32_t duration = level_duration_get_duration(ld);
assert(duration > 0);
*buffer = duration;
buffer++;
samples--;
}
}
memset(buffer, 0, samples * sizeof(uint32_t));
}
static void furi_hal_subghz_async_tx_dma_isr() {
furi_assert(furi_hal_subghz_state == SubGhzStateAsyncTx);
if(LL_DMA_IsActiveFlag_HT1(DMA1)) {
LL_DMA_ClearFlag_HT1(DMA1);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
}
if(LL_DMA_IsActiveFlag_TC1(DMA1)) {
LL_DMA_ClearFlag_TC1(DMA1);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer + API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF,
API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
}
}
static void furi_hal_subghz_async_tx_timer_isr() {
if(LL_TIM_IsActiveFlag_UPDATE(TIM2)) {
LL_TIM_ClearFlag_UPDATE(TIM2);
if(LL_TIM_GetAutoReload(TIM2) == 0) {
if(furi_hal_subghz_state == SubGhzStateAsyncTx) {
furi_hal_subghz_state = SubGhzStateAsyncTxLast;
//forcibly pulls the pin to the ground so that there is no carrier
hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullDown, GpioSpeedLow);
} else {
furi_hal_subghz_state = SubGhzStateAsyncTxEnd;
LL_TIM_DisableCounter(TIM2);
}
}
}
}
bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void* context) {
furi_assert(furi_hal_subghz_state == SubGhzStateIdle);
furi_assert(callback);
//If transmission is prohibited by regional settings
if(furi_hal_subghz_regulation != SubGhzRegulationTxRx) return false;
furi_hal_subghz_async_tx.callback = callback;
furi_hal_subghz_async_tx.callback_context = context;
furi_hal_subghz_state = SubGhzStateAsyncTx;
furi_hal_subghz_async_tx.buffer =
furi_alloc(API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * sizeof(uint32_t));
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL);
// Connect CC1101_GD0 to TIM2 as output
hal_gpio_init_ex(
&gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullDown, GpioSpeedLow, GpioAltFn1TIM2);
// Configure DMA
LL_DMA_InitTypeDef dma_config = {0};
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR);
dma_config.MemoryOrM2MDstAddress = (uint32_t)furi_hal_subghz_async_tx.buffer;
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_CIRCULAR;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_config.NbData = API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
dma_config.Priority = LL_DMA_MODE_NORMAL;
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &dma_config);
furi_hal_interrupt_set_dma_channel_isr(
DMA1, LL_DMA_CHANNEL_1, furi_hal_subghz_async_tx_dma_isr);
LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
// Configure TIM2
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64 - 1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 1000;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_EnableARRPreload(TIM2);
// Configure TIM2 CH2
LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};
TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_TOGGLE;
TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.CompareValue = 0;
TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct);
LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_DisableMasterSlaveMode(TIM2);
furi_hal_interrupt_set_timer_isr(TIM2, furi_hal_subghz_async_tx_timer_isr);
LL_TIM_EnableIT_UPDATE(TIM2);
LL_TIM_EnableDMAReq_UPDATE(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
// Start counter
LL_TIM_GenerateEvent_UPDATE(TIM2);
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, true);
#endif
furi_hal_subghz_tx();
// Enable NVIC
NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
NVIC_EnableIRQ(TIM2_IRQn);
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
return true;
}
bool furi_hal_subghz_is_async_tx_complete() {
return furi_hal_subghz_state == SubGhzStateAsyncTxEnd;
}
void furi_hal_subghz_stop_async_tx() {
furi_assert(
furi_hal_subghz_state == SubGhzStateAsyncTx ||
furi_hal_subghz_state == SubGhzStateAsyncTxLast ||
furi_hal_subghz_state == SubGhzStateAsyncTxEnd);
// Shutdown radio
furi_hal_subghz_idle();
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, false);
#endif
// Deinitialize Timer
LL_TIM_DeInit(TIM2);
LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_TIM2);
furi_hal_interrupt_set_timer_isr(TIM2, NULL);
// Deinitialize DMA
LL_DMA_DeInit(DMA1, LL_DMA_CHANNEL_1);
furi_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_1, NULL);
// Deinitialize GPIO
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
free(furi_hal_subghz_async_tx.buffer);
furi_hal_subghz_state = SubGhzStateIdle;
}