unleashed-firmware/lib/irda/encoder_decoder/rc6/irda_decoder_rc6.c
Albert Kharisov 4f233ff0a3
[FL-1800] IRDA: enc/decoder refactoring, Add NEC42 ()
* WIP: IRDA: multilen protocol refactoring, NEC42
* IRDA: Refactoring encoder/decoder

Co-authored-by: あく <alleteam@gmail.com>
2021-09-15 20:22:58 +03:00

110 lines
3.5 KiB
C

#include "irda.h"
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <furi.h>
#include "../irda_i.h"
#include "../irda_protocol_defs_i.h"
typedef struct {
IrdaCommonDecoder* common_decoder;
bool toggle;
} IrdaRc6Decoder;
bool irda_decoder_rc6_interpret(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
uint32_t* data = (void*) &decoder->data[0];
// MSB first
uint8_t address = reverse((uint8_t) (*data >> 5));
uint8_t command = reverse((uint8_t) (*data >> 13));
bool start_bit = *data & 0x01;
bool toggle = !!(*data & 0x10);
uint8_t mode = (*data >> 1) & 0x7;
if ((start_bit == 1) && (mode == 0)) {
IrdaMessage* message = &decoder->message;
IrdaRc6Decoder *rc6_decoder = decoder->context;
bool *prev_toggle = &rc6_decoder->toggle;
if ((message->address == address)
&& (message->command == command)
&& (message->protocol == IrdaProtocolRC6)) {
message->repeat = (toggle == *prev_toggle);
} else {
message->repeat = false;
}
*prev_toggle = toggle;
message->command = command;
message->address = address;
message->protocol = IrdaProtocolRC6;
result = true;
}
return result;
}
/*
* RC6 Uses manchester encoding, but it has twice longer
* 4-th bit (toggle bit) time quant, so we need to decode
* it separately and than pass decoding for other bits to
* common manchester decode function.
*/
IrdaStatus irda_decoder_rc6_decode_manchester(IrdaCommonDecoder* decoder, bool level, uint32_t timing) {
// 4th bit lasts 2x times more
IrdaStatus status = IrdaStatusError;
uint16_t bit = decoder->protocol->timings.bit1_mark;
uint16_t tolerance = decoder->protocol->timings.bit_tolerance;
bool single_timing = MATCH_TIMING(timing, bit, tolerance);
bool double_timing = MATCH_TIMING(timing, 2*bit, tolerance);
bool triple_timing = MATCH_TIMING(timing, 3*bit, tolerance);
if (decoder->databit_cnt == 4) {
furi_assert(decoder->switch_detect == true);
if (single_timing ^ triple_timing) {
++decoder->databit_cnt;
decoder->data[0] |= (single_timing ? !level : level) << 4;
status = IrdaStatusOk;
}
} else if (decoder->databit_cnt == 5) {
if (single_timing || triple_timing) {
if (triple_timing)
timing = bit;
decoder->switch_detect = false;
status = irda_common_decode_manchester(decoder, level, timing);
} else if (double_timing) {
status = IrdaStatusOk;
}
} else {
status = irda_common_decode_manchester(decoder, level, timing);
}
return status;
}
void* irda_decoder_rc6_alloc(void) {
IrdaRc6Decoder* decoder = furi_alloc(sizeof(IrdaRc6Decoder));
decoder->toggle = false;
decoder->common_decoder = irda_common_decoder_alloc(&protocol_rc6);
decoder->common_decoder->context = decoder;
return decoder;
}
IrdaMessage* irda_decoder_rc6_decode(void* decoder, bool level, uint32_t duration) {
IrdaRc6Decoder* decoder_rc6 = decoder;
return irda_common_decode(decoder_rc6->common_decoder, level, duration);
}
void irda_decoder_rc6_free(void* decoder) {
IrdaRc6Decoder* decoder_rc6 = decoder;
irda_common_decoder_free(decoder_rc6->common_decoder);
free(decoder_rc6);
}
void irda_decoder_rc6_reset(void* decoder) {
IrdaRc6Decoder* decoder_rc6 = decoder;
irda_common_decoder_reset(decoder_rc6->common_decoder);
}