unleashed-firmware/applications/main/subghz/views/subghz_frequency_analyzer.c

637 lines
23 KiB
C

#include "subghz_frequency_analyzer.h"
#include <furi.h>
#include <furi_hal.h>
#include <input/input.h>
#include <notification/notification_messages.h>
#include <gui/elements.h>
#include "../helpers/subghz_frequency_analyzer_worker.h"
#include <assets_icons.h>
#include <float_tools.h>
#define TAG "frequency_analyzer"
#define RSSI_MIN -97
#define RSSI_MAX -60
#define RSSI_SCALE 2.3
#define TRIGGER_STEP 1
#define MAX_HISTORY 4
static const uint32_t subghz_frequency_list[] = {
300000000, 302757000, 303875000, 303900000, 304250000, 307000000, 307500000, 307800000,
309000000, 310000000, 312000000, 312100000, 313000000, 313850000, 314000000, 314350000,
314980000, 315000000, 318000000, 330000000, 345000000, 348000000, 350000000, 387000000,
390000000, 418000000, 430000000, 431000000, 431500000, 433075000, 433220000, 433420000,
433657070, 433889000, 433920000, 434075000, 434176948, 434390000, 434420000, 434775000,
438900000, 440175000, 464000000, 779000000, 868350000, 868400000, 868800000, 868950000,
906400000, 915000000, 925000000, 928000000};
typedef enum {
SubGhzFrequencyAnalyzerStatusIDLE,
} SubGhzFrequencyAnalyzerStatus;
struct SubGhzFrequencyAnalyzer {
View* view;
SubGhzFrequencyAnalyzerWorker* worker;
SubGhzFrequencyAnalyzerCallback callback;
void* context;
SubGhzTxRx* txrx;
bool locked;
SubGHzFrequencyAnalyzerFeedbackLevel
feedback_level; // 0 - no feedback, 1 - vibro only, 2 - vibro and sound
float rssi_last;
uint8_t selected_index;
uint8_t max_index;
bool show_frame;
};
typedef struct {
uint32_t frequency;
uint32_t frequency_to_save;
float rssi;
uint32_t history_frequency[MAX_HISTORY];
uint8_t history_frequency_rx_count[MAX_HISTORY];
bool signal;
float rssi_last;
float trigger;
SubGHzFrequencyAnalyzerFeedbackLevel feedback_level;
uint8_t selected_index;
uint8_t max_index;
bool show_frame;
bool is_ext_radio;
} SubGhzFrequencyAnalyzerModel;
void subghz_frequency_analyzer_set_callback(
SubGhzFrequencyAnalyzer* subghz_frequency_analyzer,
SubGhzFrequencyAnalyzerCallback callback,
void* context) {
furi_assert(subghz_frequency_analyzer);
furi_assert(callback);
subghz_frequency_analyzer->callback = callback;
subghz_frequency_analyzer->context = context;
}
void subghz_frequency_analyzer_draw_rssi(
Canvas* canvas,
float rssi,
float rssi_last,
float trigger,
uint8_t x,
uint8_t y) {
// Current RSSI
if(rssi) {
if(rssi > RSSI_MAX) {
rssi = RSSI_MAX;
}
rssi = (rssi - RSSI_MIN) / RSSI_SCALE;
uint8_t column_number = 0;
for(size_t i = 0; i <= (uint8_t)rssi; i++) {
if((i + 1) % 4) {
column_number++;
canvas_draw_box(canvas, x + 2 * i, (y + 4) - column_number, 2, column_number);
}
}
}
// Last RSSI
if(rssi_last) {
if(rssi_last > RSSI_MAX) {
rssi_last = RSSI_MAX;
}
int max_x = (int)((rssi_last - RSSI_MIN) / RSSI_SCALE) * 2;
//if(!(max_x % 8)) max_x -= 2;
int max_h = (int)((rssi_last - RSSI_MIN) / RSSI_SCALE) + 1;
max_h -= (max_h / 4) + 3;
canvas_draw_line(canvas, x + max_x + 1, y - max_h, x + max_x + 1, y + 3);
}
// Trigger cursor
trigger = (trigger - RSSI_MIN) / RSSI_SCALE;
uint8_t tr_x = x + 2 * trigger;
canvas_draw_dot(canvas, tr_x, y + 4);
canvas_draw_line(canvas, tr_x - 1, y + 5, tr_x + 1, y + 5);
canvas_draw_line(canvas, x, y + 3, x + (RSSI_MAX - RSSI_MIN) * 2 / RSSI_SCALE, y + 3);
}
static void subghz_frequency_analyzer_history_frequency_draw(
Canvas* canvas,
SubGhzFrequencyAnalyzerModel* model) {
char buffer[64];
const uint8_t x1 = 2;
const uint8_t x2 = 66;
const uint8_t y = 37;
canvas_set_font(canvas, FontSecondary);
uint8_t line = 0;
bool show_frame = model->show_frame && model->max_index > 0;
for(uint8_t i = 0; i < MAX_HISTORY; i++) {
uint8_t current_x;
uint8_t current_y = y + line * 11;
if(i % 2 == 0) {
current_x = x1;
} else {
current_x = x2;
line++;
}
if(model->history_frequency[i]) {
snprintf(
buffer,
sizeof(buffer),
"%03ld.%03ld",
model->history_frequency[i] / 1000000 % 1000,
model->history_frequency[i] / 1000 % 1000);
canvas_draw_str(canvas, current_x, current_y, buffer);
} else {
canvas_draw_str(canvas, current_x, current_y, "---.---");
}
if(model->history_frequency_rx_count[i] > 0) {
snprintf(buffer, sizeof(buffer), "x%d", model->history_frequency_rx_count[i]);
canvas_draw_str(canvas, current_x + 41, current_y, buffer);
} else {
canvas_draw_str(canvas, current_x + 41, current_y, "MHz");
}
if(show_frame && i == model->selected_index) {
elements_frame(canvas, current_x - 2, current_y - 9, 63, 11);
}
}
}
void subghz_frequency_analyzer_draw(Canvas* canvas, SubGhzFrequencyAnalyzerModel* model) {
char buffer[64];
// Title
canvas_set_color(canvas, ColorBlack);
canvas_set_font(canvas, FontSecondary);
canvas_draw_str(canvas, 0, 7, model->is_ext_radio ? "Ext" : "Int");
canvas_draw_str(canvas, 20, 7, "Frequency Analyzer");
// RSSI
canvas_draw_str(canvas, 33, 62, "RSSI");
subghz_frequency_analyzer_draw_rssi(
canvas, model->rssi, model->rssi_last, model->trigger, 56, 57);
// Last detected frequency
subghz_frequency_analyzer_history_frequency_draw(canvas, model);
// Frequency
canvas_set_font(canvas, FontBigNumbers);
snprintf(
buffer,
sizeof(buffer),
"%03ld.%03ld",
model->frequency / 1000000 % 1000,
model->frequency / 1000 % 1000);
if(model->signal) {
canvas_draw_box(canvas, 4, 10, 121, 19);
canvas_set_color(canvas, ColorWhite);
} else {
// TODO: Disable this
//canvas_draw_box(canvas, 4, 11, 121, 19);
//canvas_set_color(canvas, ColorWhite);
}
canvas_draw_str(canvas, 8, 26, buffer);
canvas_draw_icon(canvas, 96, 15, &I_MHz_25x11);
canvas_set_color(canvas, ColorBlack);
canvas_set_font(canvas, FontSecondary);
const uint8_t icon_x = 119;
switch(model->feedback_level) {
case SubGHzFrequencyAnalyzerFeedbackLevelAll:
canvas_draw_icon(canvas, icon_x, 1, &I_Volup_8x6);
break;
case SubGHzFrequencyAnalyzerFeedbackLevelVibro:
canvas_draw_icon(canvas, icon_x, 1, &I_Voldwn_6x6);
break;
case SubGHzFrequencyAnalyzerFeedbackLevelMute:
canvas_draw_icon(canvas, icon_x, 1, &I_Voldwn_6x6);
canvas_set_color(canvas, ColorWhite);
canvas_draw_box(canvas, 123, 1, 2, 6);
canvas_set_color(canvas, ColorBlack);
break;
}
// Buttons hint
canvas_set_font(canvas, FontSecondary);
elements_button_left(canvas, "T-");
elements_button_right(canvas, "+T");
}
uint32_t subghz_frequency_find_correct(uint32_t input) {
uint32_t prev_freq = 0;
uint32_t current = 0;
uint32_t result = 0;
for(size_t i = 0; i < sizeof(subghz_frequency_list); i++) {
current = subghz_frequency_list[i];
if(current == input) {
result = current;
break;
}
if(current > input && prev_freq < input) {
if(current - input < input - prev_freq) {
result = current;
} else {
result = prev_freq;
}
break;
}
prev_freq = current;
}
return result;
}
bool subghz_frequency_analyzer_input(InputEvent* event, void* context) {
furi_assert(context);
SubGhzFrequencyAnalyzer* instance = context;
bool need_redraw = false;
if(event->key == InputKeyBack) {
return false;
}
if(((event->type == InputTypePress) || (event->type == InputTypeRepeat)) &&
((event->key == InputKeyLeft) || (event->key == InputKeyRight))) {
// Trigger setup
float trigger_level = subghz_frequency_analyzer_worker_get_trigger_level(instance->worker);
switch(event->key) {
case InputKeyLeft:
trigger_level -= TRIGGER_STEP;
if(trigger_level < RSSI_MIN) {
trigger_level = RSSI_MIN;
}
break;
default:
case InputKeyRight:
trigger_level += TRIGGER_STEP;
if(trigger_level > RSSI_MAX) {
trigger_level = RSSI_MAX;
}
break;
}
subghz_frequency_analyzer_worker_set_trigger_level(instance->worker, trigger_level);
FURI_LOG_D(TAG, "trigger = %.1f", (double)trigger_level);
need_redraw = true;
} else if(event->type == InputTypePress && event->key == InputKeyUp) {
if(instance->feedback_level == 0) {
instance->feedback_level = 2;
} else {
instance->feedback_level--;
}
need_redraw = true;
} else if(
((event->type == InputTypePress) || (event->type == InputTypeRepeat)) &&
event->key == InputKeyDown) {
instance->show_frame = instance->max_index > 0;
if(instance->show_frame) {
instance->selected_index = (instance->selected_index + 1) % instance->max_index;
need_redraw = true;
}
} else if(event->key == InputKeyOk) {
need_redraw = true;
bool updated = false;
uint32_t frequency_to_save = 0;
with_view_model(
instance->view,
SubGhzFrequencyAnalyzerModel * model,
{
frequency_to_save = model->frequency_to_save;
if(model->show_frame && !model->signal) {
uint32_t prev_freq_to_save = model->frequency_to_save;
uint32_t frequency_candidate = model->history_frequency[model->selected_index];
if(frequency_candidate == 0 ||
// !furi_hal_subghz_is_frequency_valid(frequency_candidate) ||
!subghz_txrx_radio_device_is_frequency_valid(
instance->txrx, frequency_candidate) ||
prev_freq_to_save == frequency_candidate) {
frequency_candidate = 0;
} else {
frequency_candidate = subghz_frequency_find_correct(frequency_candidate);
}
if(frequency_candidate > 0 &&
frequency_candidate != model->frequency_to_save) {
model->frequency_to_save = frequency_candidate;
updated = true;
}
} else if(model->show_frame && model->signal) {
uint32_t prev_freq_to_save = model->frequency_to_save;
uint32_t frequency_candidate = subghz_frequency_find_correct(model->frequency);
if(frequency_candidate == 0 ||
// !furi_hal_subghz_is_frequency_valid(frequency_candidate) ||
!subghz_txrx_radio_device_is_frequency_valid(
instance->txrx, frequency_candidate) ||
prev_freq_to_save == frequency_candidate) {
frequency_candidate = 0;
} else {
frequency_candidate = subghz_frequency_find_correct(frequency_candidate);
}
if(frequency_candidate > 0 &&
frequency_candidate != model->frequency_to_save) {
model->frequency_to_save = frequency_candidate;
updated = true;
}
} else if(!model->show_frame && model->signal) {
uint32_t prev_freq_to_save = model->frequency_to_save;
uint32_t frequency_candidate = subghz_frequency_find_correct(model->frequency);
if(frequency_candidate == 0 ||
// !furi_hal_subghz_is_frequency_valid(frequency_candidate) ||
!subghz_txrx_radio_device_is_frequency_valid(
instance->txrx, frequency_candidate) ||
prev_freq_to_save == frequency_candidate) {
frequency_candidate = 0;
} else {
frequency_candidate = subghz_frequency_find_correct(frequency_candidate);
}
if(frequency_candidate > 0 &&
frequency_candidate != model->frequency_to_save) {
model->frequency_to_save = frequency_candidate;
updated = true;
}
}
},
true);
if(updated) {
instance->callback(SubGhzCustomEventViewFreqAnalOkShort, instance->context);
}
// First device receive short, then when user release button we get long
if(event->type == InputTypeLong && frequency_to_save > 0) {
// Stop worker
if(subghz_frequency_analyzer_worker_is_running(instance->worker)) {
subghz_frequency_analyzer_worker_stop(instance->worker);
}
instance->callback(SubGhzCustomEventViewFreqAnalOkLong, instance->context);
}
}
if(need_redraw) {
SubGhzFrequencyAnalyzer* instance = context;
with_view_model(
instance->view,
SubGhzFrequencyAnalyzerModel * model,
{
model->rssi_last = instance->rssi_last;
model->trigger =
subghz_frequency_analyzer_worker_get_trigger_level(instance->worker);
model->feedback_level = instance->feedback_level;
model->max_index = instance->max_index;
model->show_frame = instance->show_frame;
model->selected_index = instance->selected_index;
},
true);
}
return true;
}
uint32_t round_int(uint32_t value, uint8_t n) {
// Round value
uint8_t on = n;
while(n--) {
uint8_t i = value % 10;
value /= 10;
if(i >= 5) value++;
}
while(on--) value *= 10;
return value;
}
void subghz_frequency_analyzer_pair_callback(
void* context,
uint32_t frequency,
float rssi,
bool signal) {
SubGhzFrequencyAnalyzer* instance = context;
if(float_is_equal(rssi, 0.f) && instance->locked) {
if(instance->callback) {
instance->callback(SubGhzCustomEventSceneAnalyzerUnlock, instance->context);
}
//update history
instance->show_frame = true;
uint8_t max_index = instance->max_index;
with_view_model(
instance->view,
SubGhzFrequencyAnalyzerModel * model,
{
bool in_array = false;
uint32_t normal_frequency = subghz_frequency_find_correct(model->frequency);
for(size_t i = 0; i < MAX_HISTORY; i++) {
if(model->history_frequency[i] == normal_frequency) {
in_array = true;
if(model->history_frequency[i] > 0) {
if(model->history_frequency_rx_count[i] == 0) {
model->history_frequency_rx_count[i]++;
}
model->history_frequency_rx_count[i]++;
}
if(i > 0) {
size_t offset = 0;
uint8_t temp_rx_count = model->history_frequency_rx_count[i];
for(size_t j = MAX_HISTORY - 1; j > 0; j--) {
if(j == i) {
offset++;
}
model->history_frequency[j] = model->history_frequency[j - offset];
model->history_frequency_rx_count[j] =
model->history_frequency_rx_count[j - offset];
}
model->history_frequency[0] = normal_frequency;
model->history_frequency_rx_count[0] = temp_rx_count;
}
break;
}
}
if(!in_array) {
model->history_frequency[3] = model->history_frequency[2];
model->history_frequency[2] = model->history_frequency[1];
model->history_frequency[1] = model->history_frequency[0];
model->history_frequency[0] = normal_frequency;
model->history_frequency_rx_count[3] = model->history_frequency_rx_count[2];
model->history_frequency_rx_count[2] = model->history_frequency_rx_count[1];
model->history_frequency_rx_count[1] = model->history_frequency_rx_count[0];
model->history_frequency_rx_count[0] = 0;
}
if(max_index < MAX_HISTORY) {
for(size_t i = 0; i < MAX_HISTORY; i++) {
if(model->history_frequency[i] > 0) {
max_index = i + 1;
}
}
}
},
false);
instance->max_index = max_index;
} else if((rssi != 0.f) && (!instance->locked)) {
// There is some signal
FURI_LOG_I(TAG, "rssi = %.2f, frequency = %ld Hz", (double)rssi, frequency);
frequency = round_int(frequency, 3); // Round 299999990Hz to 300000000Hz
// Triggered!
instance->rssi_last = rssi;
if(instance->callback) {
instance->callback(SubGhzCustomEventSceneAnalyzerLock, instance->context);
}
}
// Update values
if(rssi >= instance->rssi_last && (frequency != 0)) {
instance->rssi_last = rssi;
}
instance->locked = (rssi != 0.f);
with_view_model(
instance->view,
SubGhzFrequencyAnalyzerModel * model,
{
model->rssi = rssi;
model->rssi_last = instance->rssi_last;
model->frequency = frequency;
model->signal = signal;
model->trigger = subghz_frequency_analyzer_worker_get_trigger_level(instance->worker);
model->feedback_level = instance->feedback_level;
model->max_index = instance->max_index;
model->show_frame = instance->show_frame;
model->selected_index = instance->selected_index;
},
true);
}
void subghz_frequency_analyzer_enter(void* context) {
furi_assert(context);
SubGhzFrequencyAnalyzer* instance = context;
//Start worker
instance->worker = subghz_frequency_analyzer_worker_alloc(instance->context);
subghz_frequency_analyzer_worker_set_pair_callback(
instance->worker,
(SubGhzFrequencyAnalyzerWorkerPairCallback)subghz_frequency_analyzer_pair_callback,
instance);
subghz_frequency_analyzer_worker_start(instance->worker, instance->txrx);
instance->rssi_last = 0;
instance->selected_index = 0;
instance->max_index = 0;
instance->show_frame = false;
//subghz_frequency_analyzer_worker_set_trigger_level(instance->worker, RSSI_MIN);
with_view_model(
instance->view,
SubGhzFrequencyAnalyzerModel * model,
{
model->selected_index = 0;
model->max_index = 0;
model->show_frame = false;
model->rssi = 0;
model->rssi_last = 0;
model->frequency = 0;
model->history_frequency[3] = 0;
model->history_frequency[2] = 0;
model->history_frequency[1] = 0;
model->history_frequency[0] = 0;
model->history_frequency_rx_count[3] = 0;
model->history_frequency_rx_count[2] = 0;
model->history_frequency_rx_count[1] = 0;
model->history_frequency_rx_count[0] = 0;
model->frequency_to_save = 0;
model->trigger = RSSI_MIN;
model->is_ext_radio =
(subghz_txrx_radio_device_get(instance->txrx) != SubGhzRadioDeviceTypeInternal);
},
true);
}
void subghz_frequency_analyzer_exit(void* context) {
furi_assert(context);
SubGhzFrequencyAnalyzer* instance = context;
// Stop worker
if(subghz_frequency_analyzer_worker_is_running(instance->worker)) {
subghz_frequency_analyzer_worker_stop(instance->worker);
}
subghz_frequency_analyzer_worker_free(instance->worker);
furi_record_close(RECORD_NOTIFICATION);
}
SubGhzFrequencyAnalyzer* subghz_frequency_analyzer_alloc(SubGhzTxRx* txrx) {
SubGhzFrequencyAnalyzer* instance = malloc(sizeof(SubGhzFrequencyAnalyzer));
instance->feedback_level = 2;
// View allocation and configuration
instance->view = view_alloc();
view_allocate_model(
instance->view, ViewModelTypeLocking, sizeof(SubGhzFrequencyAnalyzerModel));
view_set_context(instance->view, instance);
view_set_draw_callback(instance->view, (ViewDrawCallback)subghz_frequency_analyzer_draw);
view_set_input_callback(instance->view, subghz_frequency_analyzer_input);
view_set_enter_callback(instance->view, subghz_frequency_analyzer_enter);
view_set_exit_callback(instance->view, subghz_frequency_analyzer_exit);
instance->txrx = txrx;
return instance;
}
void subghz_frequency_analyzer_free(SubGhzFrequencyAnalyzer* instance) {
furi_assert(instance);
view_free(instance->view);
free(instance);
}
View* subghz_frequency_analyzer_get_view(SubGhzFrequencyAnalyzer* instance) {
furi_assert(instance);
return instance->view;
}
uint32_t subghz_frequency_analyzer_get_frequency_to_save(SubGhzFrequencyAnalyzer* instance) {
furi_assert(instance);
uint32_t frequency;
with_view_model(
instance->view,
SubGhzFrequencyAnalyzerModel * model,
{ frequency = model->frequency_to_save; },
false);
return frequency;
}
SubGHzFrequencyAnalyzerFeedbackLevel subghz_frequency_analyzer_feedback_level(
SubGhzFrequencyAnalyzer* instance,
SubGHzFrequencyAnalyzerFeedbackLevel level,
bool update) {
furi_assert(instance);
if(update) {
instance->feedback_level = level;
with_view_model(
instance->view,
SubGhzFrequencyAnalyzerModel * model,
{ model->feedback_level = instance->feedback_level; },
true);
}
return instance->feedback_level;
}
float subghz_frequency_analyzer_get_trigger_level(SubGhzFrequencyAnalyzer* instance) {
furi_assert(instance);
return subghz_frequency_analyzer_worker_get_trigger_level(instance->worker);
}