unleashed-firmware/firmware/targets/f7/furi_hal/furi_hal_subghz.c
2023-04-24 01:56:43 +03:00

996 lines
36 KiB
C

#include <furi_hal_subghz.h>
#include <furi_hal_subghz_configs.h>
#include <furi_hal_version.h>
#include <furi_hal_rtc.h>
#include <furi_hal_spi.h>
#include <furi_hal_interrupt.h>
#include <furi_hal_resources.h>
#include <furi_hal_power.h>
#include <stm32wbxx_ll_dma.h>
#include <lib/flipper_format/flipper_format.h>
#include <furi.h>
#include <cc1101.h>
#include <stdio.h>
#define TAG "FuriHalSubGhz"
//Initialisation timeout (ms)
#define INIT_TIMEOUT 10
static uint32_t furi_hal_subghz_debug_gpio_buff[2];
/* DMA Channels definition */
#define SUBGHZ_DMA DMA2
#define SUBGHZ_DMA_CH1_CHANNEL LL_DMA_CHANNEL_1
#define SUBGHZ_DMA_CH2_CHANNEL LL_DMA_CHANNEL_2
#define SUBGHZ_DMA_CH1_IRQ FuriHalInterruptIdDma2Ch1
#define SUBGHZ_DMA_CH1_DEF SUBGHZ_DMA, SUBGHZ_DMA_CH1_CHANNEL
#define SUBGHZ_DMA_CH2_DEF SUBGHZ_DMA, SUBGHZ_DMA_CH2_CHANNEL
volatile FuriHalSubGhz furi_hal_subghz = {
.state = SubGhzStateInit,
.regulation = SubGhzRegulationTxRx,
.preset = FuriHalSubGhzPresetIDLE,
.async_mirror_pin = NULL,
.radio_type = SubGhzRadioInternal,
.spi_bus_handle = &furi_hal_spi_bus_handle_subghz,
.cc1101_g0_pin = &gpio_cc1101_g0,
.rolling_counter_mult = 1,
.ext_module_power_disabled = false,
.timestamp_file_names = false,
};
void furi_hal_subghz_select_radio_type(SubGhzRadioType state) {
furi_hal_subghz.radio_type = state;
}
bool furi_hal_subghz_init_radio_type(SubGhzRadioType state) {
furi_hal_spi_bus_handle_deinit(furi_hal_subghz.spi_bus_handle);
if(state == SubGhzRadioInternal) {
furi_hal_subghz.spi_bus_handle = &furi_hal_spi_bus_handle_subghz;
furi_hal_subghz.cc1101_g0_pin = &gpio_cc1101_g0;
} else {
furi_hal_subghz.spi_bus_handle = &furi_hal_spi_bus_handle_subghz_ext;
furi_hal_subghz.cc1101_g0_pin = &gpio_cc1101_g0_ext;
}
furi_hal_spi_bus_handle_init(furi_hal_subghz.spi_bus_handle);
furi_hal_subghz_init_check();
return true;
}
SubGhzRadioType furi_hal_subghz_get_radio_type(void) {
return furi_hal_subghz.radio_type;
}
uint8_t furi_hal_subghz_get_rolling_counter_mult(void) {
return furi_hal_subghz.rolling_counter_mult;
}
void furi_hal_subghz_set_rolling_counter_mult(uint8_t mult) {
furi_hal_subghz.rolling_counter_mult = mult;
}
void furi_hal_subghz_set_external_power_disable(bool state) {
furi_hal_subghz.ext_module_power_disabled = state;
}
bool furi_hal_subghz_get_external_power_disable(void) {
return furi_hal_subghz.ext_module_power_disabled;
}
void furi_hal_subghz_set_timestamp_file_names(bool state) {
furi_hal_subghz.timestamp_file_names = state;
}
bool furi_hal_subghz_get_timestamp_file_names(void) {
return furi_hal_subghz.timestamp_file_names;
}
void furi_hal_subghz_set_async_mirror_pin(const GpioPin* pin) {
furi_hal_subghz.async_mirror_pin = pin;
}
void furi_hal_subghz_init(void) {
furi_hal_subghz_init_check();
}
bool furi_hal_subghz_enable_ext_power(void) {
if(furi_hal_subghz.ext_module_power_disabled) {
return false;
}
if(furi_hal_subghz.radio_type != SubGhzRadioInternal) {
uint8_t attempts = 0;
while(!furi_hal_power_is_otg_enabled() && attempts++ < 5) {
furi_hal_power_enable_otg();
//CC1101 power-up time
furi_delay_ms(10);
}
}
return furi_hal_power_is_otg_enabled();
}
void furi_hal_subghz_disable_ext_power(void) {
if(furi_hal_power_is_otg_enabled()) {
furi_hal_power_disable_otg();
}
}
bool furi_hal_subghz_check_radio(void) {
bool result = true;
furi_hal_subghz_init_radio_type(furi_hal_subghz.radio_type);
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
uint8_t ver = cc1101_get_version(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
if((ver != 0) && (ver != 255)) {
FURI_LOG_D(TAG, "Radio check ok");
} else {
FURI_LOG_D(TAG, "Radio check failed, revert to default");
result = false;
}
return result;
}
bool furi_hal_subghz_init_check(void) {
bool result = true;
furi_assert(furi_hal_subghz.state == SubGhzStateInit);
furi_hal_subghz.state = SubGhzStateIdle;
furi_hal_subghz.preset = FuriHalSubGhzPresetIDLE;
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
furi_hal_gpio_init(&FURI_HAL_SUBGHZ_TX_GPIO, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
#endif
// Reset
furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_reset(furi_hal_subghz.spi_bus_handle);
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance);
// Prepare GD0 for power on self test
furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeInput, GpioPullNo, GpioSpeedLow);
// GD0 low
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHW);
uint32_t test_start_time = furi_get_tick();
while(furi_hal_gpio_read(furi_hal_subghz.cc1101_g0_pin) != false && result) {
if(furi_get_tick() - test_start_time > INIT_TIMEOUT) {
result = false;
}
}
// GD0 high
cc1101_write_reg(
furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV);
test_start_time = furi_get_tick();
while(furi_hal_gpio_read(furi_hal_subghz.cc1101_g0_pin) != true && result) {
if(furi_get_tick() - test_start_time > INIT_TIMEOUT) {
result = false;
}
}
// Reset GD0 to floating state
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
// RF switches
furi_hal_gpio_init(&gpio_rf_sw_0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW);
// Go to sleep
cc1101_shutdown(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
if(result) {
FURI_LOG_I(TAG, "Init OK");
} else {
FURI_LOG_E(TAG, "Selected CC1101 module init failed, revert to default");
}
return result;
}
void furi_hal_subghz_sleep() {
furi_assert(furi_hal_subghz.state == SubGhzStateIdle);
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_switch_to_idle(furi_hal_subghz.spi_bus_handle);
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_shutdown(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
furi_hal_subghz.preset = FuriHalSubGhzPresetIDLE;
}
void furi_hal_subghz_dump_state() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
printf(
"[furi_hal_subghz] cc1101 chip %d, version %d\r\n",
cc1101_get_partnumber(furi_hal_subghz.spi_bus_handle),
cc1101_get_version(furi_hal_subghz.spi_bus_handle));
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
void furi_hal_subghz_load_preset(FuriHalSubGhzPreset preset) {
if(preset == FuriHalSubGhzPresetOok650Async) {
furi_hal_subghz_load_registers((uint8_t*)furi_hal_subghz_preset_ook_650khz_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_ook_async_patable);
} else if(preset == FuriHalSubGhzPresetOok270Async) {
furi_hal_subghz_load_registers((uint8_t*)furi_hal_subghz_preset_ook_270khz_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_ook_async_patable);
} else if(preset == FuriHalSubGhzPreset2FSKDev238Async) {
furi_hal_subghz_load_registers(
(uint8_t*)furi_hal_subghz_preset_2fsk_dev2_38khz_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_2fsk_async_patable);
} else if(preset == FuriHalSubGhzPreset2FSKDev476Async) {
furi_hal_subghz_load_registers(
(uint8_t*)furi_hal_subghz_preset_2fsk_dev47_6khz_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_2fsk_async_patable);
} else if(preset == FuriHalSubGhzPresetMSK99_97KbAsync) {
furi_hal_subghz_load_registers((uint8_t*)furi_hal_subghz_preset_msk_99_97kb_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_msk_async_patable);
} else if(preset == FuriHalSubGhzPresetGFSK9_99KbAsync) {
furi_hal_subghz_load_registers((uint8_t*)furi_hal_subghz_preset_gfsk_9_99kb_async_regs);
furi_hal_subghz_load_patable(furi_hal_subghz_preset_gfsk_async_patable);
} else {
furi_crash("SubGhz: Missing config.");
}
furi_hal_subghz.preset = preset;
}
void furi_hal_subghz_load_custom_preset(uint8_t* preset_data) {
//load config
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_reset(furi_hal_subghz.spi_bus_handle);
uint32_t i = 0;
uint8_t pa[8] = {0};
while(preset_data[i]) {
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, preset_data[i], preset_data[i + 1]);
i += 2;
}
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
//load pa table
memcpy(&pa[0], &preset_data[i + 2], 8);
furi_hal_subghz_load_patable(pa);
furi_hal_subghz.preset = FuriHalSubGhzPresetCustom;
//show debug
if(furi_hal_rtc_is_flag_set(FuriHalRtcFlagDebug)) {
i = 0;
FURI_LOG_D(TAG, "Loading custom preset");
while(preset_data[i]) {
FURI_LOG_D(TAG, "Reg[%lu]: %02X=%02X", i, preset_data[i], preset_data[i + 1]);
i += 2;
}
for(uint8_t y = i; y < i + 10; y++) {
FURI_LOG_D(TAG, "PA[%u]: %02X", y, preset_data[y]);
}
}
}
void furi_hal_subghz_load_registers(uint8_t* data) {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_reset(furi_hal_subghz.spi_bus_handle);
uint32_t i = 0;
while(data[i]) {
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, data[i], data[i + 1]);
i += 2;
}
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
void furi_hal_subghz_load_patable(const uint8_t data[8]) {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_set_pa_table(furi_hal_subghz.spi_bus_handle, data);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
void furi_hal_subghz_write_packet(const uint8_t* data, uint8_t size) {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_flush_tx(furi_hal_subghz.spi_bus_handle);
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_FIFO, size);
cc1101_write_fifo(furi_hal_subghz.spi_bus_handle, data, size);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
void furi_hal_subghz_flush_rx() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_flush_rx(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
void furi_hal_subghz_flush_tx() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_flush_tx(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
bool furi_hal_subghz_rx_pipe_not_empty() {
CC1101RxBytes status[1];
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_read_reg(
furi_hal_subghz.spi_bus_handle, (CC1101_STATUS_RXBYTES) | CC1101_BURST, (uint8_t*)status);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
// TODO: you can add a buffer overflow flag if needed
if(status->NUM_RXBYTES > 0) {
return true;
} else {
return false;
}
}
bool furi_hal_subghz_is_rx_data_crc_valid() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
uint8_t data[1];
cc1101_read_reg(furi_hal_subghz.spi_bus_handle, CC1101_STATUS_LQI | CC1101_BURST, data);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
if(((data[0] >> 7) & 0x01)) {
return true;
} else {
return false;
}
}
void furi_hal_subghz_read_packet(uint8_t* data, uint8_t* size) {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_read_fifo(furi_hal_subghz.spi_bus_handle, data, size);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
void furi_hal_subghz_shutdown() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
// Reset and shutdown
cc1101_shutdown(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
void furi_hal_subghz_reset() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_switch_to_idle(furi_hal_subghz.spi_bus_handle);
cc1101_reset(furi_hal_subghz.spi_bus_handle);
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
void furi_hal_subghz_idle() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_switch_to_idle(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
void furi_hal_subghz_rx() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_switch_to_rx(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
bool furi_hal_subghz_tx() {
if(furi_hal_subghz.regulation != SubGhzRegulationTxRx) return false;
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
cc1101_switch_to_tx(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
return true;
}
float furi_hal_subghz_get_rssi() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
int32_t rssi_dec = cc1101_get_rssi(furi_hal_subghz.spi_bus_handle);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
float rssi = rssi_dec;
if(rssi_dec >= 128) {
rssi = ((rssi - 256.0f) / 2.0f) - 74.0f;
} else {
rssi = (rssi / 2.0f) - 74.0f;
}
return rssi;
}
uint8_t furi_hal_subghz_get_lqi() {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
uint8_t data[1];
cc1101_read_reg(furi_hal_subghz.spi_bus_handle, CC1101_STATUS_LQI | CC1101_BURST, data);
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
return data[0] & 0x7F;
}
/*
Modified by @tkerby & MX to the full YARD Stick One extended range of 281-361 MHz, 378-481 MHz, and 749-962 MHz.
These changes are at your own risk. The PLL may not lock and FZ devs have warned of possible damage!
*/
bool furi_hal_subghz_is_frequency_valid(uint32_t value) {
if(!(value >= 281000000 && value <= 361000000) &&
!(value >= 378000000 && value <= 481000000) &&
!(value >= 749000000 && value <= 962000000)) {
return false;
}
return true;
}
uint32_t furi_hal_subghz_set_frequency_and_path(uint32_t value) {
// Set these values to the extended frequency range only. They dont define if you can transmit but do select the correct RF path
value = furi_hal_subghz_set_frequency(value);
if(value >= 281000000 && value <= 361000000) {
furi_hal_subghz_set_path(FuriHalSubGhzPath315);
} else if(value >= 378000000 && value <= 481000000) {
furi_hal_subghz_set_path(FuriHalSubGhzPath433);
} else if(value >= 749000000 && value <= 962000000) {
furi_hal_subghz_set_path(FuriHalSubGhzPath868);
} else {
furi_crash("SubGhz: Incorrect frequency during set.");
}
return value;
}
bool furi_hal_subghz_is_tx_allowed(uint32_t value) {
bool is_extended = false;
// TODO: !!! Move file check to another place
Storage* storage = furi_record_open(RECORD_STORAGE);
FlipperFormat* fff_data_file = flipper_format_file_alloc(storage);
if(flipper_format_file_open_existing(fff_data_file, "/ext/subghz/assets/dangerous_settings")) {
flipper_format_read_bool(
fff_data_file, "yes_i_want_to_destroy_my_flipper", &is_extended, 1);
}
flipper_format_free(fff_data_file);
furi_record_close(RECORD_STORAGE);
if(!(value >= 299999755 && value <= 350000335) && // was increased from 348 to 350
!(value >= 386999938 && value <= 467750000) && // was increased from 464 to 467.75
!(value >= 778999847 && value <= 928000000) && !(is_extended)) {
FURI_LOG_I(TAG, "Frequency blocked - outside default range");
return false;
} else if(
!(value >= 281000000 && value <= 361000000) &&
!(value >= 378000000 && value <= 481000000) &&
!(value >= 749000000 && value <= 962000000) && is_extended) {
FURI_LOG_I(TAG, "Frequency blocked - outside dangerous range");
return false;
}
return true;
}
uint32_t furi_hal_subghz_set_frequency(uint32_t value) {
furi_hal_subghz.regulation = SubGhzRegulationTxRx;
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
uint32_t real_frequency = cc1101_set_frequency(furi_hal_subghz.spi_bus_handle, value);
cc1101_calibrate(furi_hal_subghz.spi_bus_handle);
while(true) {
CC1101Status status = cc1101_get_status(furi_hal_subghz.spi_bus_handle);
if(status.STATE == CC1101StateIDLE) break;
}
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
return real_frequency;
}
void furi_hal_subghz_set_path(FuriHalSubGhzPath path) {
furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle);
if(path == FuriHalSubGhzPath433) {
furi_hal_gpio_write(&gpio_rf_sw_0, 0);
cc1101_write_reg(
furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV);
} else if(path == FuriHalSubGhzPath315) {
furi_hal_gpio_write(&gpio_rf_sw_0, 1);
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW);
} else if(path == FuriHalSubGhzPath868) {
furi_hal_gpio_write(&gpio_rf_sw_0, 1);
cc1101_write_reg(
furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV);
} else if(path == FuriHalSubGhzPathIsolate) {
furi_hal_gpio_write(&gpio_rf_sw_0, 0);
cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW);
} else {
furi_crash("SubGhz: Incorrect path during set.");
}
furi_hal_spi_release(furi_hal_subghz.spi_bus_handle);
}
static bool furi_hal_subghz_start_debug() {
bool ret = false;
if(furi_hal_subghz.async_mirror_pin != NULL) {
furi_hal_gpio_init(
furi_hal_subghz.async_mirror_pin,
GpioModeOutputPushPull,
GpioPullNo,
GpioSpeedVeryHigh);
ret = true;
}
return ret;
}
static bool furi_hal_subghz_stop_debug() {
bool ret = false;
if(furi_hal_subghz.async_mirror_pin != NULL) {
furi_hal_gpio_init(
furi_hal_subghz.async_mirror_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
ret = true;
}
return ret;
}
volatile uint32_t furi_hal_subghz_capture_delta_duration = 0;
volatile FuriHalSubGhzCaptureCallback furi_hal_subghz_capture_callback = NULL;
volatile void* furi_hal_subghz_capture_callback_context = NULL;
static void furi_hal_subghz_capture_int_ISR() {
// Channel 1
if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
LL_TIM_ClearFlag_CC1(TIM2);
furi_hal_subghz_capture_delta_duration = LL_TIM_IC_GetCaptureCH1(TIM2);
if(furi_hal_subghz_capture_callback) {
if(furi_hal_subghz.async_mirror_pin != NULL)
furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, false);
furi_hal_subghz_capture_callback(
true,
furi_hal_subghz_capture_delta_duration,
(void*)furi_hal_subghz_capture_callback_context);
}
}
// Channel 2
if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
LL_TIM_ClearFlag_CC2(TIM2);
if(furi_hal_subghz_capture_callback) {
if(furi_hal_subghz.async_mirror_pin != NULL)
furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, true);
furi_hal_subghz_capture_callback(
false,
LL_TIM_IC_GetCaptureCH2(TIM2) - furi_hal_subghz_capture_delta_duration,
(void*)furi_hal_subghz_capture_callback_context);
}
}
}
static void furi_hal_subghz_capture_ext_ISR() {
if(!furi_hal_gpio_read(furi_hal_subghz.cc1101_g0_pin)) {
if(furi_hal_subghz_capture_callback) {
if(furi_hal_subghz.async_mirror_pin != NULL)
furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, false);
furi_hal_subghz_capture_callback(
true, TIM2->CNT, (void*)furi_hal_subghz_capture_callback_context);
}
} else {
if(furi_hal_subghz_capture_callback) {
if(furi_hal_subghz.async_mirror_pin != NULL)
furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, true);
furi_hal_subghz_capture_callback(
false, TIM2->CNT, (void*)furi_hal_subghz_capture_callback_context);
}
}
TIM2->CNT = 6;
}
void furi_hal_subghz_start_async_rx(FuriHalSubGhzCaptureCallback callback, void* context) {
furi_assert(furi_hal_subghz.state == SubGhzStateIdle);
furi_hal_subghz.state = SubGhzStateAsyncRx;
furi_hal_subghz_capture_callback = callback;
furi_hal_subghz_capture_callback_context = context;
// Timer: base
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64 - 1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 0x7FFFFFFE;
// Clock division for capture filter (for internal radio)
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV4;
LL_TIM_Init(TIM2, &TIM_InitStruct);
// Timer: advanced
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM2);
LL_TIM_DisableDMAReq_TRIG(TIM2);
LL_TIM_DisableIT_TRIG(TIM2);
if(furi_hal_subghz.radio_type == SubGhzRadioInternal) {
LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI2FP2);
LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
LL_TIM_EnableMasterSlaveMode(TIM2);
// Timer: channel 1 indirect
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_INDIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_FALLING);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
// Timer: channel 2 direct
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV32_N8);
// ISR setup
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, furi_hal_subghz_capture_int_ISR, NULL);
// Interrupts and channels
LL_TIM_EnableIT_CC1(TIM2);
LL_TIM_EnableIT_CC2(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
furi_hal_gpio_init_ex(
furi_hal_subghz.cc1101_g0_pin,
GpioModeAltFunctionPushPull,
GpioPullNo,
GpioSpeedLow,
GpioAltFn1TIM2);
} else {
furi_hal_gpio_init(
furi_hal_subghz.cc1101_g0_pin,
GpioModeInterruptRiseFall,
GpioPullUp,
GpioSpeedVeryHigh);
furi_hal_gpio_disable_int_callback(furi_hal_subghz.cc1101_g0_pin);
furi_hal_gpio_remove_int_callback(furi_hal_subghz.cc1101_g0_pin);
furi_hal_gpio_add_int_callback(
furi_hal_subghz.cc1101_g0_pin,
furi_hal_subghz_capture_ext_ISR,
furi_hal_subghz_capture_callback);
}
// Start timer
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
// Start debug
furi_hal_subghz_start_debug();
// Switch to RX
furi_hal_subghz_rx();
// Clear the variable after the end of the session
furi_hal_subghz_capture_delta_duration = 0;
}
void furi_hal_subghz_stop_async_rx() {
furi_assert(furi_hal_subghz.state == SubGhzStateAsyncRx);
furi_hal_subghz.state = SubGhzStateIdle;
// Shutdown radio
furi_hal_subghz_idle();
FURI_CRITICAL_ENTER();
LL_TIM_DeInit(TIM2);
// Stop debug
furi_hal_subghz_stop_debug();
FURI_CRITICAL_EXIT();
if(furi_hal_subghz.radio_type == SubGhzRadioInternal) {
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL);
} else {
furi_hal_gpio_disable_int_callback(furi_hal_subghz.cc1101_g0_pin);
furi_hal_gpio_remove_int_callback(furi_hal_subghz.cc1101_g0_pin);
}
furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
typedef struct {
uint32_t* buffer;
LevelDuration carry_ld;
FuriHalSubGhzAsyncTxCallback callback;
void* callback_context;
uint64_t duty_high;
uint64_t duty_low;
} FuriHalSubGhzAsyncTx;
static FuriHalSubGhzAsyncTx furi_hal_subghz_async_tx = {0};
static void furi_hal_subghz_async_tx_refill(uint32_t* buffer, size_t samples) {
furi_assert(furi_hal_subghz.state == SubGhzStateAsyncTx);
while(samples > 0) {
bool is_odd = samples % 2;
LevelDuration ld;
if(level_duration_is_reset(furi_hal_subghz_async_tx.carry_ld)) {
ld = furi_hal_subghz_async_tx.callback(furi_hal_subghz_async_tx.callback_context);
} else {
ld = furi_hal_subghz_async_tx.carry_ld;
furi_hal_subghz_async_tx.carry_ld = level_duration_reset();
}
if(level_duration_is_wait(ld)) {
*buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
buffer++;
samples--;
} else if(level_duration_is_reset(ld)) {
*buffer = 0;
buffer++;
samples--;
LL_DMA_DisableIT_HT(SUBGHZ_DMA_CH1_DEF);
LL_DMA_DisableIT_TC(SUBGHZ_DMA_CH1_DEF);
LL_TIM_EnableIT_UPDATE(TIM2);
break;
} else {
bool level = level_duration_get_level(ld);
// Inject guard time if level is incorrect
if(is_odd != level) {
*buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
buffer++;
samples--;
if(is_odd) {
furi_hal_subghz_async_tx.duty_high += API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
} else {
furi_hal_subghz_async_tx.duty_low += API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
}
// Special case: prevent buffer overflow if sample is last
if(samples == 0) {
furi_hal_subghz_async_tx.carry_ld = ld;
break;
}
}
uint32_t duration = level_duration_get_duration(ld);
furi_assert(duration > 0);
*buffer = duration;
buffer++;
samples--;
if(is_odd) {
furi_hal_subghz_async_tx.duty_high += duration;
} else {
furi_hal_subghz_async_tx.duty_low += duration;
}
}
}
}
static void furi_hal_subghz_async_tx_dma_isr() {
furi_assert(furi_hal_subghz.state == SubGhzStateAsyncTx);
#if SUBGHZ_DMA_CH1_CHANNEL == LL_DMA_CHANNEL_1
if(LL_DMA_IsActiveFlag_HT1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_HT1(SUBGHZ_DMA);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
}
if(LL_DMA_IsActiveFlag_TC1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_TC1(SUBGHZ_DMA);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer + API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF,
API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
}
#else
#error Update this code. Would you kindly?
#endif
}
static void furi_hal_subghz_async_tx_timer_isr() {
if(LL_TIM_IsActiveFlag_UPDATE(TIM2)) {
LL_TIM_ClearFlag_UPDATE(TIM2);
if(LL_TIM_GetAutoReload(TIM2) == 0) {
if(furi_hal_subghz.state == SubGhzStateAsyncTx) {
furi_hal_subghz.state = SubGhzStateAsyncTxLast;
LL_DMA_DisableChannel(SUBGHZ_DMA_CH1_DEF);
} else if(furi_hal_subghz.state == SubGhzStateAsyncTxLast) {
furi_hal_subghz.state = SubGhzStateAsyncTxEnd;
//forcibly pulls the pin to the ground so that there is no carrier
furi_hal_gpio_init(
furi_hal_subghz.cc1101_g0_pin, GpioModeInput, GpioPullDown, GpioSpeedLow);
LL_TIM_DisableCounter(TIM2);
} else {
furi_crash(NULL);
}
}
}
}
bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void* context) {
furi_assert(furi_hal_subghz.state == SubGhzStateIdle);
furi_assert(callback);
//If transmission is prohibited by regional settings
if(furi_hal_subghz.regulation != SubGhzRegulationTxRx) return false;
furi_hal_subghz_async_tx.callback = callback;
furi_hal_subghz_async_tx.callback_context = context;
furi_hal_subghz.state = SubGhzStateAsyncTx;
furi_hal_subghz_async_tx.duty_low = 0;
furi_hal_subghz_async_tx.duty_high = 0;
furi_hal_subghz_async_tx.buffer =
malloc(API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * sizeof(uint32_t));
if(furi_hal_subghz.radio_type == SubGhzRadioInternal) {
// Connect CC1101_GD0 to TIM2 as output
furi_hal_gpio_init_ex(
furi_hal_subghz.cc1101_g0_pin,
GpioModeAltFunctionPushPull,
GpioPullDown,
GpioSpeedLow,
GpioAltFn1TIM2);
} else {
//Signal generation with mem-to-mem DMA
furi_hal_gpio_write(furi_hal_subghz.cc1101_g0_pin, true);
furi_hal_gpio_init(
furi_hal_subghz.cc1101_g0_pin, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
}
// Configure DMA
LL_DMA_InitTypeDef dma_config = {0};
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR);
dma_config.MemoryOrM2MDstAddress = (uint32_t)furi_hal_subghz_async_tx.buffer;
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_CIRCULAR;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_config.NbData = API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
dma_config.Priority = LL_DMA_MODE_NORMAL;
LL_DMA_Init(SUBGHZ_DMA_CH1_DEF, &dma_config);
furi_hal_interrupt_set_isr(SUBGHZ_DMA_CH1_IRQ, furi_hal_subghz_async_tx_dma_isr, NULL);
LL_DMA_EnableIT_TC(SUBGHZ_DMA_CH1_DEF);
LL_DMA_EnableIT_HT(SUBGHZ_DMA_CH1_DEF);
LL_DMA_EnableChannel(SUBGHZ_DMA_CH1_DEF);
// Configure TIM2
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64 - 1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 1000;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_EnableARRPreload(TIM2);
// Configure TIM2 CH2
LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};
TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_TOGGLE;
TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.CompareValue = 0;
TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_LOW;
LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct);
LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_DisableMasterSlaveMode(TIM2);
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, furi_hal_subghz_async_tx_timer_isr, NULL);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL);
LL_TIM_EnableDMAReq_UPDATE(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
// Start counter
LL_TIM_GenerateEvent_UPDATE(TIM2);
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
furi_hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, true);
#endif
furi_hal_subghz_tx();
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
// Start debug
if(furi_hal_subghz_start_debug() || furi_hal_subghz.radio_type == SubGhzRadioExternal) {
const GpioPin* gpio = furi_hal_subghz.cc1101_g0_pin;
//Preparing bit mask
//Debug pin is may be only PORTB! (PB0, PB1, .., PB15)
furi_hal_subghz_debug_gpio_buff[0] = 0;
furi_hal_subghz_debug_gpio_buff[1] = 0;
//Mirror pin (for example, speaker)
if(furi_hal_subghz.async_mirror_pin != NULL) {
furi_hal_subghz_debug_gpio_buff[0] |= (uint32_t)furi_hal_subghz.async_mirror_pin->pin
<< GPIO_NUMBER;
furi_hal_subghz_debug_gpio_buff[1] |= furi_hal_subghz.async_mirror_pin->pin;
gpio = furi_hal_subghz.async_mirror_pin;
}
//G0 singnal generation for external radio
if(furi_hal_subghz.radio_type == SubGhzRadioExternal) {
furi_hal_subghz_debug_gpio_buff[0] |= (uint32_t)furi_hal_subghz.cc1101_g0_pin->pin
<< GPIO_NUMBER;
furi_hal_subghz_debug_gpio_buff[1] |= furi_hal_subghz.cc1101_g0_pin->pin;
}
dma_config.MemoryOrM2MDstAddress = (uint32_t)furi_hal_subghz_debug_gpio_buff;
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (gpio->port->BSRR);
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_CIRCULAR;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_config.NbData = 2;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
dma_config.Priority = LL_DMA_PRIORITY_VERYHIGH;
LL_DMA_Init(SUBGHZ_DMA_CH2_DEF, &dma_config);
LL_DMA_SetDataLength(SUBGHZ_DMA_CH2_DEF, 2);
LL_DMA_EnableChannel(SUBGHZ_DMA_CH2_DEF);
}
return true;
}
bool furi_hal_subghz_is_async_tx_complete() {
return furi_hal_subghz.state == SubGhzStateAsyncTxEnd;
}
void furi_hal_subghz_stop_async_tx() {
furi_assert(
furi_hal_subghz.state == SubGhzStateAsyncTx ||
furi_hal_subghz.state == SubGhzStateAsyncTxLast ||
furi_hal_subghz.state == SubGhzStateAsyncTxEnd);
// Shutdown radio
furi_hal_subghz_idle();
if(furi_hal_subghz.radio_type == SubGhzRadioExternal) {
furi_hal_gpio_write(furi_hal_subghz.cc1101_g0_pin, false);
}
// Deinitialize Timer
FURI_CRITICAL_ENTER();
LL_TIM_DeInit(TIM2);
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL);
// Deinitialize DMA
LL_DMA_DeInit(SUBGHZ_DMA_CH1_DEF);
furi_hal_interrupt_set_isr(SUBGHZ_DMA_CH1_IRQ, NULL, NULL);
// Deinitialize GPIO
furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
// Stop debug
furi_hal_subghz_stop_debug();
if(((furi_hal_subghz.async_mirror_pin != NULL) &&
(furi_hal_subghz.radio_type == SubGhzRadioInternal)) ||
(furi_hal_subghz.radio_type == SubGhzRadioExternal)) {
LL_DMA_DisableChannel(SUBGHZ_DMA_CH2_DEF);
}
FURI_CRITICAL_EXIT();
free(furi_hal_subghz_async_tx.buffer);
float duty_cycle =
100.0f * (float)furi_hal_subghz_async_tx.duty_high /
((float)furi_hal_subghz_async_tx.duty_low + (float)furi_hal_subghz_async_tx.duty_high);
FURI_LOG_D(
TAG,
"Async TX Radio stats: on %0.0fus, off %0.0fus, DutyCycle: %0.0f%%",
(double)furi_hal_subghz_async_tx.duty_high,
(double)furi_hal_subghz_async_tx.duty_low,
(double)duty_cycle);
furi_hal_subghz.state = SubGhzStateIdle;
}