unleashed-firmware/lib/subghz/protocols/nice_flo.c
Sergey Gavrilov 4bf29827f8
M*LIB: non-inlined strings, FuriString primitive (#1795)
* Quicksave 1
* Header stage complete
* Source stage complete
* Lint & merge fixes
* Includes
* Documentation step 1
* FBT: output free size considering BT STACK
* Documentation step 2
* py lint
* Fix music player plugin
* unit test stage 1: string allocator, mem, getters, setters, appends, compare, search.
* unit test: string equality
* unit test: string replace
* unit test: string start_with, end_with
* unit test: string trim
* unit test: utf-8
* Rename
* Revert fw_size changes
* Simplify CLI backspace handling
* Simplify CLI character insert
* Merge fixes
* Furi: correct filenaming and spelling
* Bt: remove furi string include

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2022-10-06 00:15:23 +09:00

330 lines
12 KiB
C

#include "nice_flo.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolNiceFLO"
static const SubGhzBlockConst subghz_protocol_nice_flo_const = {
.te_short = 700,
.te_long = 1400,
.te_delta = 200,
.min_count_bit_for_found = 12,
};
struct SubGhzProtocolDecoderNiceFlo {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
};
struct SubGhzProtocolEncoderNiceFlo {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
NiceFloDecoderStepReset = 0,
NiceFloDecoderStepFoundStartBit,
NiceFloDecoderStepSaveDuration,
NiceFloDecoderStepCheckDuration,
} NiceFloDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_nice_flo_decoder = {
.alloc = subghz_protocol_decoder_nice_flo_alloc,
.free = subghz_protocol_decoder_nice_flo_free,
.feed = subghz_protocol_decoder_nice_flo_feed,
.reset = subghz_protocol_decoder_nice_flo_reset,
.get_hash_data = subghz_protocol_decoder_nice_flo_get_hash_data,
.serialize = subghz_protocol_decoder_nice_flo_serialize,
.deserialize = subghz_protocol_decoder_nice_flo_deserialize,
.get_string = subghz_protocol_decoder_nice_flo_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_nice_flo_encoder = {
.alloc = subghz_protocol_encoder_nice_flo_alloc,
.free = subghz_protocol_encoder_nice_flo_free,
.deserialize = subghz_protocol_encoder_nice_flo_deserialize,
.stop = subghz_protocol_encoder_nice_flo_stop,
.yield = subghz_protocol_encoder_nice_flo_yield,
};
const SubGhzProtocol subghz_protocol_nice_flo = {
.name = SUBGHZ_PROTOCOL_NICE_FLO_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM |
SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save |
SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_nice_flo_decoder,
.encoder = &subghz_protocol_nice_flo_encoder,
};
void* subghz_protocol_encoder_nice_flo_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderNiceFlo* instance = malloc(sizeof(SubGhzProtocolEncoderNiceFlo));
instance->base.protocol = &subghz_protocol_nice_flo;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 52; //max 24bit*2 + 2 (start, stop)
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_nice_flo_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderNiceFlo* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderNiceFlo instance
* @return true On success
*/
static bool subghz_protocol_encoder_nice_flo_get_upload(SubGhzProtocolEncoderNiceFlo* instance) {
furi_assert(instance);
size_t index = 0;
size_t size_upload = (instance->generic.data_count_bit * 2) + 2;
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send header
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_nice_flo_const.te_short * 36);
//Send start bit
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_nice_flo_const.te_short);
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_nice_flo_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_nice_flo_const.te_short);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_nice_flo_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_nice_flo_const.te_long);
}
}
return true;
}
bool subghz_protocol_encoder_nice_flo_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderNiceFlo* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if((instance->generic.data_count_bit !=
subghz_protocol_nice_flo_const.min_count_bit_for_found) &&
(instance->generic.data_count_bit !=
2 * subghz_protocol_nice_flo_const.min_count_bit_for_found)) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_nice_flo_get_upload(instance)) break;
instance->encoder.is_running = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_nice_flo_stop(void* context) {
SubGhzProtocolEncoderNiceFlo* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_nice_flo_yield(void* context) {
SubGhzProtocolEncoderNiceFlo* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_nice_flo_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderNiceFlo* instance = malloc(sizeof(SubGhzProtocolDecoderNiceFlo));
instance->base.protocol = &subghz_protocol_nice_flo;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_nice_flo_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
free(instance);
}
void subghz_protocol_decoder_nice_flo_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
instance->decoder.parser_step = NiceFloDecoderStepReset;
}
void subghz_protocol_decoder_nice_flo_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
switch(instance->decoder.parser_step) {
case NiceFloDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_nice_flo_const.te_short * 36) <
subghz_protocol_nice_flo_const.te_delta * 36)) {
//Found header Nice Flo
instance->decoder.parser_step = NiceFloDecoderStepFoundStartBit;
}
break;
case NiceFloDecoderStepFoundStartBit:
if(!level) {
break;
} else if(
DURATION_DIFF(duration, subghz_protocol_nice_flo_const.te_short) <
subghz_protocol_nice_flo_const.te_delta) {
//Found start bit Nice Flo
instance->decoder.parser_step = NiceFloDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepSaveDuration:
if(!level) { //save interval
if(duration >= (subghz_protocol_nice_flo_const.te_short * 4)) {
instance->decoder.parser_step = NiceFloDecoderStepFoundStartBit;
if(instance->decoder.decode_count_bit >=
subghz_protocol_nice_flo_const.min_count_bit_for_found) {
instance->generic.serial = 0x0;
instance->generic.btn = 0x0;
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
break;
}
instance->decoder.te_last = duration;
instance->decoder.parser_step = NiceFloDecoderStepCheckDuration;
} else {
instance->decoder.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_nice_flo_const.te_short) <
subghz_protocol_nice_flo_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_nice_flo_const.te_long) <
subghz_protocol_nice_flo_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = NiceFloDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_nice_flo_const.te_long) <
subghz_protocol_nice_flo_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_nice_flo_const.te_short) <
subghz_protocol_nice_flo_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = NiceFloDecoderStepSaveDuration;
} else
instance->decoder.parser_step = NiceFloDecoderStepReset;
} else {
instance->decoder.parser_step = NiceFloDecoderStepReset;
}
break;
}
}
uint8_t subghz_protocol_decoder_nice_flo_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_nice_flo_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzPresetDefinition* preset) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_nice_flo_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if((instance->generic.data_count_bit !=
subghz_protocol_nice_flo_const.min_count_bit_for_found) &&
(instance->generic.data_count_bit !=
2 * subghz_protocol_nice_flo_const.min_count_bit_for_found)) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
void subghz_protocol_decoder_nice_flo_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_lo,
code_found_reverse_lo);
}