unleashed-firmware/lib/lfrfid/protocols/protocol_indala26.c
Leptopt1los dd988ba449
bit_lib and nfc_util refactor (#3383)
* nfc_util functions for processing bytes moved into bit_lib
* bitlib test update
* bit_lib moved from lfrfid to standalone lib
* Added bit functions for any supported data types
* Error fix and api add
* Added test for 64
* Added doc
* Testcase for 64 rewrited
* Realization error fix
* API version bump
* sync api version, fix after-merge old libs usage
* fix build errors
* build fix
* fbt format

Co-authored-by: assasinfil <nfa57643@gmail.com>
Co-authored-by: gornekich <n.gorbadey@gmail.com>
Co-authored-by: あく <alleteam@gmail.com>
2024-02-14 11:41:42 +07:00

356 lines
12 KiB
C

#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <bit_lib/bit_lib.h>
#include "lfrfid_protocols.h"
#define INDALA26_PREAMBLE_BIT_SIZE (33)
#define INDALA26_PREAMBLE_DATA_SIZE (5)
#define INDALA26_ENCODED_BIT_SIZE (64)
#define INDALA26_ENCODED_DATA_SIZE \
(((INDALA26_ENCODED_BIT_SIZE) / 8) + INDALA26_PREAMBLE_DATA_SIZE)
#define INDALA26_ENCODED_DATA_LAST ((INDALA26_ENCODED_BIT_SIZE) / 8)
#define INDALA26_DECODED_BIT_SIZE (28)
#define INDALA26_DECODED_DATA_SIZE (4)
#define INDALA26_US_PER_BIT (255)
#define INDALA26_ENCODER_PULSES_PER_BIT (16)
typedef struct {
uint8_t data_index;
uint8_t bit_clock_index;
bool last_bit;
bool current_polarity;
bool pulse_phase;
} ProtocolIndalaEncoder;
typedef struct {
uint8_t encoded_data[INDALA26_ENCODED_DATA_SIZE];
uint8_t negative_encoded_data[INDALA26_ENCODED_DATA_SIZE];
uint8_t corrupted_encoded_data[INDALA26_ENCODED_DATA_SIZE];
uint8_t corrupted_negative_encoded_data[INDALA26_ENCODED_DATA_SIZE];
uint8_t data[INDALA26_DECODED_DATA_SIZE];
ProtocolIndalaEncoder encoder;
} ProtocolIndala;
ProtocolIndala* protocol_indala26_alloc(void) {
ProtocolIndala* protocol = malloc(sizeof(ProtocolIndala));
return protocol;
};
void protocol_indala26_free(ProtocolIndala* protocol) {
free(protocol);
};
uint8_t* protocol_indala26_get_data(ProtocolIndala* protocol) {
return protocol->data;
};
void protocol_indala26_decoder_start(ProtocolIndala* protocol) {
memset(protocol->encoded_data, 0, INDALA26_ENCODED_DATA_SIZE);
memset(protocol->negative_encoded_data, 0, INDALA26_ENCODED_DATA_SIZE);
memset(protocol->corrupted_encoded_data, 0, INDALA26_ENCODED_DATA_SIZE);
memset(protocol->corrupted_negative_encoded_data, 0, INDALA26_ENCODED_DATA_SIZE);
};
static bool protocol_indala26_check_preamble(uint8_t* data, size_t bit_index) {
// Preamble 10100000 00000000 00000000 00000000 1
if(*(uint32_t*)&data[bit_index / 8] != 0b00000000000000000000000010100000) return false;
if(bit_lib_get_bit(data, bit_index + 32) != 1) return false;
return true;
}
static bool protocol_indala26_can_be_decoded(uint8_t* data) {
if(!protocol_indala26_check_preamble(data, 0)) return false;
if(!protocol_indala26_check_preamble(data, 64)) return false;
if(bit_lib_get_bit(data, 61) != 0) return false;
if(bit_lib_get_bit(data, 60) != 0) return false;
return true;
}
static bool protocol_indala26_decoder_feed_internal(bool polarity, uint32_t time, uint8_t* data) {
time += (INDALA26_US_PER_BIT / 2);
size_t bit_count = (time / INDALA26_US_PER_BIT);
bool result = false;
if(bit_count < INDALA26_ENCODED_BIT_SIZE) {
for(size_t i = 0; i < bit_count; i++) {
bit_lib_push_bit(data, INDALA26_ENCODED_DATA_SIZE, polarity);
if(protocol_indala26_can_be_decoded(data)) {
result = true;
break;
}
}
}
return result;
}
static void protocol_indala26_decoder_save(uint8_t* data_to, const uint8_t* data_from) {
bit_lib_copy_bits(data_to, 0, 22, data_from, 33);
bit_lib_copy_bits(data_to, 22, 5, data_from, 55);
bit_lib_copy_bits(data_to, 27, 2, data_from, 62);
}
bool protocol_indala26_decoder_feed(ProtocolIndala* protocol, bool level, uint32_t duration) {
bool result = false;
if(duration > (INDALA26_US_PER_BIT / 2)) {
if(protocol_indala26_decoder_feed_internal(level, duration, protocol->encoded_data)) {
protocol_indala26_decoder_save(protocol->data, protocol->encoded_data);
FURI_LOG_D("Indala26", "Positive");
result = true;
return result;
}
if(protocol_indala26_decoder_feed_internal(
!level, duration, protocol->negative_encoded_data)) {
protocol_indala26_decoder_save(protocol->data, protocol->negative_encoded_data);
FURI_LOG_D("Indala26", "Negative");
result = true;
return result;
}
}
if(duration > (INDALA26_US_PER_BIT / 4)) {
// Try to decode wrong phase synced data
if(level) {
duration += 120;
} else {
if(duration > 120) {
duration -= 120;
}
}
if(protocol_indala26_decoder_feed_internal(
level, duration, protocol->corrupted_encoded_data)) {
protocol_indala26_decoder_save(protocol->data, protocol->corrupted_encoded_data);
FURI_LOG_D("Indala26", "Positive Corrupted");
result = true;
return result;
}
if(protocol_indala26_decoder_feed_internal(
!level, duration, protocol->corrupted_negative_encoded_data)) {
protocol_indala26_decoder_save(
protocol->data, protocol->corrupted_negative_encoded_data);
FURI_LOG_D("Indala26", "Negative Corrupted");
result = true;
return result;
}
}
return result;
};
bool protocol_indala26_encoder_start(ProtocolIndala* protocol) {
memset(protocol->encoded_data, 0, INDALA26_ENCODED_DATA_SIZE);
*(uint32_t*)&protocol->encoded_data[0] = 0b00000000000000000000000010100000;
bit_lib_set_bit(protocol->encoded_data, 32, 1);
bit_lib_copy_bits(protocol->encoded_data, 33, 22, protocol->data, 0);
bit_lib_copy_bits(protocol->encoded_data, 55, 5, protocol->data, 22);
bit_lib_copy_bits(protocol->encoded_data, 62, 2, protocol->data, 27);
protocol->encoder.last_bit =
bit_lib_get_bit(protocol->encoded_data, INDALA26_ENCODED_BIT_SIZE - 1);
protocol->encoder.data_index = 0;
protocol->encoder.current_polarity = true;
protocol->encoder.pulse_phase = true;
protocol->encoder.bit_clock_index = 0;
return true;
};
LevelDuration protocol_indala26_encoder_yield(ProtocolIndala* protocol) {
LevelDuration level_duration;
ProtocolIndalaEncoder* encoder = &protocol->encoder;
if(encoder->pulse_phase) {
level_duration = level_duration_make(encoder->current_polarity, 1);
encoder->pulse_phase = false;
} else {
level_duration = level_duration_make(!encoder->current_polarity, 1);
encoder->pulse_phase = true;
encoder->bit_clock_index++;
if(encoder->bit_clock_index >= INDALA26_ENCODER_PULSES_PER_BIT) {
encoder->bit_clock_index = 0;
bool current_bit = bit_lib_get_bit(protocol->encoded_data, encoder->data_index);
if(current_bit != encoder->last_bit) {
encoder->current_polarity = !encoder->current_polarity;
}
encoder->last_bit = current_bit;
bit_lib_increment_index(encoder->data_index, INDALA26_ENCODED_BIT_SIZE);
}
}
return level_duration;
};
// factory code
static uint8_t get_fc(const uint8_t* data) {
uint8_t fc = 0;
fc = fc << 1 | bit_lib_get_bit(data, 24);
fc = fc << 1 | bit_lib_get_bit(data, 16);
fc = fc << 1 | bit_lib_get_bit(data, 11);
fc = fc << 1 | bit_lib_get_bit(data, 14);
fc = fc << 1 | bit_lib_get_bit(data, 15);
fc = fc << 1 | bit_lib_get_bit(data, 20);
fc = fc << 1 | bit_lib_get_bit(data, 6);
fc = fc << 1 | bit_lib_get_bit(data, 25);
return fc;
}
// card number
static uint16_t get_cn(const uint8_t* data) {
uint16_t cn = 0;
cn = cn << 1 | bit_lib_get_bit(data, 9);
cn = cn << 1 | bit_lib_get_bit(data, 12);
cn = cn << 1 | bit_lib_get_bit(data, 10);
cn = cn << 1 | bit_lib_get_bit(data, 7);
cn = cn << 1 | bit_lib_get_bit(data, 19);
cn = cn << 1 | bit_lib_get_bit(data, 3);
cn = cn << 1 | bit_lib_get_bit(data, 2);
cn = cn << 1 | bit_lib_get_bit(data, 18);
cn = cn << 1 | bit_lib_get_bit(data, 13);
cn = cn << 1 | bit_lib_get_bit(data, 0);
cn = cn << 1 | bit_lib_get_bit(data, 4);
cn = cn << 1 | bit_lib_get_bit(data, 21);
cn = cn << 1 | bit_lib_get_bit(data, 23);
cn = cn << 1 | bit_lib_get_bit(data, 26);
cn = cn << 1 | bit_lib_get_bit(data, 17);
cn = cn << 1 | bit_lib_get_bit(data, 8);
return cn;
}
void protocol_indala26_render_data_internal(
ProtocolIndala* protocol,
FuriString* result,
bool brief) {
bool wiegand_correct = true;
bool checksum_correct = true;
const uint8_t fc = get_fc(protocol->data);
const uint16_t card = get_cn(protocol->data);
const uint32_t fc_and_card = fc << 16 | card;
const uint8_t checksum = bit_lib_get_bit(protocol->data, 27) << 1 |
bit_lib_get_bit(protocol->data, 28);
const bool even_parity = bit_lib_get_bit(protocol->data, 1);
const bool odd_parity = bit_lib_get_bit(protocol->data, 5);
// indala checksum
uint8_t checksum_sum = 0;
checksum_sum += ((fc_and_card >> 14) & 1);
checksum_sum += ((fc_and_card >> 12) & 1);
checksum_sum += ((fc_and_card >> 9) & 1);
checksum_sum += ((fc_and_card >> 8) & 1);
checksum_sum += ((fc_and_card >> 6) & 1);
checksum_sum += ((fc_and_card >> 5) & 1);
checksum_sum += ((fc_and_card >> 2) & 1);
checksum_sum += ((fc_and_card >> 0) & 1);
checksum_sum = checksum_sum & 0b1;
if(checksum_sum == 1 && checksum == 0b01) {
} else if(checksum_sum == 0 && checksum == 0b10) {
} else {
checksum_correct = false;
}
// wiegand parity
uint8_t even_parity_sum = 0;
for(int8_t i = 12; i < 24; i++) {
if(((fc_and_card >> i) & 1) == 1) {
even_parity_sum++;
}
}
if(even_parity_sum % 2 != even_parity) wiegand_correct = false;
uint8_t odd_parity_sum = 1;
for(int8_t i = 0; i < 12; i++) {
if(((fc_and_card >> i) & 1) == 1) {
odd_parity_sum++;
}
}
if(odd_parity_sum % 2 != odd_parity) wiegand_correct = false;
if(brief) {
furi_string_printf(
result,
"FC: %u\r\nCard: %u, Parity:%s%s",
fc,
card,
(checksum_correct ? "+" : "-"),
(wiegand_correct ? "+" : "-"));
} else {
furi_string_printf(
result,
"FC: %u\r\n"
"Card: %u\r\n"
"Checksum: %s\r\n"
"W26 Parity: %s",
fc,
card,
(checksum_correct ? "+" : "-"),
(wiegand_correct ? "+" : "-"));
}
}
void protocol_indala26_render_data(ProtocolIndala* protocol, FuriString* result) {
protocol_indala26_render_data_internal(protocol, result, false);
}
void protocol_indala26_render_brief_data(ProtocolIndala* protocol, FuriString* result) {
protocol_indala26_render_data_internal(protocol, result, true);
}
bool protocol_indala26_write_data(ProtocolIndala* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
protocol_indala26_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_BITRATE_RF_32 | LFRFID_T5577_MODULATION_PSK1 |
(2 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.blocks_to_write = 3;
result = true;
}
return result;
};
const ProtocolBase protocol_indala26 = {
.name = "Indala26",
.manufacturer = "Motorola",
.data_size = INDALA26_DECODED_DATA_SIZE,
.features = LFRFIDFeaturePSK,
.validate_count = 6,
.alloc = (ProtocolAlloc)protocol_indala26_alloc,
.free = (ProtocolFree)protocol_indala26_free,
.get_data = (ProtocolGetData)protocol_indala26_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_indala26_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_indala26_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_indala26_encoder_start,
.yield = (ProtocolEncoderYield)protocol_indala26_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_indala26_render_data,
.render_brief_data = (ProtocolRenderData)protocol_indala26_render_brief_data,
.write_data = (ProtocolWriteData)protocol_indala26_write_data,
};