unleashed-firmware/lib/lfrfid/protocols/protocol_gproxii.c
MX 2e787dea47
merge ofw pr 3868 [ci skip]
by zinongli

LFRFID: Fix Guard GProxII False Positive and 36-bit Parsing
2024-09-04 04:46:31 +03:00

314 lines
12 KiB
C

#include <furi.h>
#include "toolbox/level_duration.h"
#include "protocol_gproxii.h"
#include <toolbox/manchester_decoder.h>
#include <bit_lib/bit_lib.h>
#include "lfrfid_protocols.h"
#define GPROXII_PREAMBLE_BIT_SIZE (6)
#define GPROXII_ENCODED_BIT_SIZE (90)
#define GPROXII_ENCODED_BYTE_FULL_SIZE \
(((GPROXII_PREAMBLE_BIT_SIZE + GPROXII_ENCODED_BIT_SIZE) / 8))
#define GPROXII_DATA_SIZE (12)
#define GPROXII_SHORT_TIME (256)
#define GPROXII_LONG_TIME (512)
#define GPROXII_JITTER_TIME (120)
#define GPROXII_SHORT_TIME_LOW (GPROXII_SHORT_TIME - GPROXII_JITTER_TIME)
#define GPROXII_SHORT_TIME_HIGH (GPROXII_SHORT_TIME + GPROXII_JITTER_TIME)
#define GPROXII_LONG_TIME_LOW (GPROXII_LONG_TIME - GPROXII_JITTER_TIME)
#define GPROXII_LONG_TIME_HIGH (GPROXII_LONG_TIME + GPROXII_JITTER_TIME)
typedef struct {
bool last_short;
bool last_level;
size_t encoded_index;
uint8_t decoded_data[GPROXII_ENCODED_BYTE_FULL_SIZE];
uint8_t data[GPROXII_ENCODED_BYTE_FULL_SIZE];
} ProtocolGProxII;
ProtocolGProxII* protocol_gproxii_alloc(void) {
ProtocolGProxII* protocol = malloc(sizeof(ProtocolGProxII));
return protocol;
}
void protocol_gproxii_free(ProtocolGProxII* protocol) {
free(protocol);
}
uint8_t* protocol_gproxii_get_data(ProtocolGProxII* protocol) {
return protocol->decoded_data;
}
bool wiegand_check(uint64_t fc_and_card, bool even_parity, bool odd_parity, int card_len) {
uint8_t even_parity_sum = 0;
uint8_t odd_parity_sum = 1;
switch(card_len) {
case 26:
for(int8_t i = 12; i < 24; i++) {
if(((fc_and_card >> i) & 1) == 1) {
even_parity_sum++;
}
}
if(even_parity_sum % 2 != even_parity) return false;
for(int8_t i = 0; i < 12; i++) {
if(((fc_and_card >> i) & 1) == 1) {
odd_parity_sum++;
}
}
if(odd_parity_sum % 2 != odd_parity) return false;
break;
case 36:
for(int8_t i = 17; i < 34; i++) {
if(((fc_and_card >> i) & 1) == 1) {
even_parity_sum++;
}
}
if(even_parity_sum % 2 != even_parity) return false;
for(int8_t i = 0; i < 17; i++) {
if(((fc_and_card >> i) & 1) == 1) {
odd_parity_sum++;
}
}
if(odd_parity_sum % 2 != odd_parity) return false;
break;
default:
}
return true;
}
void protocol_gproxii_decoder_start(ProtocolGProxII* protocol) {
memset(protocol->data, 0, GPROXII_ENCODED_BYTE_FULL_SIZE);
memset(protocol->decoded_data, 0, GPROXII_DATA_SIZE);
protocol->last_short = false;
}
static bool protocol_gproxii_can_be_decoded(ProtocolGProxII* protocol) {
// 96 bit with 5 bit zero parity
// 0 10 20 30 40 50 60 70 80 90
// | | | | | | | | | |
// 012345 6789 0 1234 5 6789 0 1234 5 6789 0 1234 5 6789 0 1234 5 6789 0 1234 5 6789 0 1234 5 6789 0 1234 5 6789 0 1234 5 6789 0 1234 5
// ------------------------------------------------------------------------------------------------------------------------------------
// 111110 0000 0 1001 0 1101 0 1111 0 1000 0 1001 0 0000 0 1001 0 0000 0 1001 0 0000 0 1001 0 0000 0 1001 0 0000 0 1000 0 0000 0 1001 0
// Remove header and reverse bytes on the remaining 72 bits
//
// 0 10 20 30 40 50 60 70
// | | | | | | | |
// 01234567 89012345 67890123 45678901 23456789 01234567 89012345 67890123 45678901
// --------------------------------------------------------------------------------
// 00001001 11011111 10001001 00001001 00001001 00001001 00001001 00001000 00001001 - Without parity
// 10010000 11111011 10010001 10010000 10010000 10010000 10010000 00010000 10010000 - Reversed
// 10010000 01101011 00000001 00000000 00000000 00000000 00000000 10000000 00000000 - XOR all bytes from 1 using byte 0
// 72 Bit Guardall/Verex/Chubb GProx II 26 bit key with 16 bit profile
// 0 10 20 30 40 50 60 70
// | | | | | | | |
// 01234567 890123 45 6789012345678901 2 34567890 1234567890123456 7 89012345678901
// --------------------------------------------------------------------------------
// XORVALUE LLLLLL DD PPPPPPPPPPPPPPPP E FFFFFFFF CCCCCCCCCCCCCCCC O UUUUUUUUUUUUUU
// 10010000 011010 11 0000000100000000 0 00000000 0000000000000001 0 00000000000000 - Profile: 256 FC: 0 Card: 1
// 72 Bit Guardall/Verex/Chubb GProx II 36 bit key with 16 bit profile
// 0 10 20 30 40 50 60 70
// | | | | | | | |
// 01234567 890123 45 67890123 45678901 2 34567890123456 78901234567890123456 7 8901
// --------------------------------------------------------------------------------
// XORVALUE LLLLLL DD PPPPPPPP PPPPPPPP E UUUUUUFFFFFFFF UUUUCCCCCCCCCCCCCCCC O UUUU
// 10111000 100100 10 00000001 00000000 0 00000000010100 00001000100010111000 1 0000 - Profile: 256 FC: 20 Card: 35000
// X = XOR Key, L = Message length, D = 2 bit check digits, P = Profile, E = Wiegand leading even parity
// F = Faclity code, C = Card number, O = Wiegand trailing odd parity, U = Unused bits
// Check 6 bits preamble 111110
if(bit_lib_get_bits(protocol->data, 0, 6) != 0b111110) return false;
// Check always 0 parity on every 5th bit after preamble
if(!bit_lib_test_parity(protocol->data, 6, GPROXII_ENCODED_BIT_SIZE, BitLibParityAlways0, 5))
return false;
// Start GProx II decode
bit_lib_copy_bits(protocol->decoded_data, 0, GPROXII_ENCODED_BIT_SIZE, protocol->data, 6);
// Remove parity
bit_lib_remove_bit_every_nth(protocol->decoded_data, 0, GPROXII_ENCODED_BIT_SIZE, 5);
// Reverse bytes
for(int i = 0; i < 9; i++) {
protocol->decoded_data[i] = bit_lib_reverse_8_fast(protocol->decoded_data[i]);
}
// DeXOR from byte 1 using byte 0
for(int i = 1; i < 9; i++) {
protocol->decoded_data[i] = protocol->decoded_data[0] ^ protocol->decoded_data[i];
}
// Check card length is either 26 or 36
int card_len = bit_lib_get_bits(protocol->decoded_data, 8, 6);
if(card_len == 26 || card_len == 36) {
// wiegand parity
if(card_len == 26) {
uint64_t fc_and_card = bit_lib_get_bits_64(protocol->decoded_data, 33, 24);
bool even_parity = bit_lib_get_bits(protocol->decoded_data, 32, 1);
bool odd_parity = bit_lib_get_bits(protocol->decoded_data, 57, 1);
if(!wiegand_check(fc_and_card, even_parity, odd_parity, card_len)) return false;
} else if(card_len == 36) {
uint64_t fc_and_card = bit_lib_get_bits_64(protocol->decoded_data, 33, 34);
uint8_t even_parity = bit_lib_get_bits(protocol->decoded_data, 32, 1);
uint8_t odd_parity = bit_lib_get_bits(protocol->decoded_data, 67, 1);
if(!wiegand_check(fc_and_card, even_parity, odd_parity, card_len)) return false;
}
return true;
} else {
return false; // If we don't get a 26 or 36 it's not a known card type
}
}
bool protocol_gproxii_decoder_feed(ProtocolGProxII* protocol, bool level, uint32_t duration) {
UNUSED(level);
bool pushed = false;
// Bi-Phase Manchester decoding inverse. Short = 1, Long = 0
if(duration >= GPROXII_SHORT_TIME_LOW && duration <= GPROXII_SHORT_TIME_HIGH) {
if(protocol->last_short == false) {
protocol->last_short = true;
} else {
pushed = true;
bit_lib_push_bit(protocol->data, GPROXII_ENCODED_BYTE_FULL_SIZE, true);
protocol->last_short = false;
}
} else if(duration >= GPROXII_LONG_TIME_LOW && duration <= GPROXII_LONG_TIME_HIGH) {
if(protocol->last_short == false) {
pushed = true;
bit_lib_push_bit(protocol->data, GPROXII_ENCODED_BYTE_FULL_SIZE, false);
} else {
// reset
protocol->last_short = false;
}
} else {
// reset
protocol->last_short = false;
}
if(pushed && protocol_gproxii_can_be_decoded(protocol)) {
return true;
}
return false;
}
bool protocol_gproxii_encoder_start(ProtocolGProxII* protocol) {
protocol->encoded_index = 0;
protocol->last_short = false;
protocol->last_level = false;
return true;
}
LevelDuration protocol_gproxii_encoder_yield(ProtocolGProxII* protocol) {
uint32_t duration;
protocol->last_level = !protocol->last_level;
bool bit = bit_lib_get_bit(protocol->data, protocol->encoded_index);
// Bi-Phase Manchester encoder inverted
if(bit) {
// two short pulses for 1
duration = GPROXII_SHORT_TIME / 8;
if(protocol->last_short) {
bit_lib_increment_index(protocol->encoded_index, 96);
protocol->last_short = false;
} else {
protocol->last_short = true;
}
} else {
// one long pulse for 0
duration = GPROXII_LONG_TIME / 8;
bit_lib_increment_index(protocol->encoded_index, 96);
}
return level_duration_make(protocol->last_level, duration);
}
void protocol_gproxii_render_data(ProtocolGProxII* protocol, FuriString* result) {
int xor_code = bit_lib_get_bits(protocol->decoded_data, 0, 8);
int card_len = bit_lib_get_bits(protocol->decoded_data, 8, 6);
int crc_code = bit_lib_get_bits(protocol->decoded_data, 14, 2);
if(card_len == 26) { // 26 Bit card
// Print FC, Card and Length
furi_string_cat_printf(
result,
"FC: %u Card: %u LEN: %hhu\n",
bit_lib_get_bits(protocol->decoded_data, 33, 8),
bit_lib_get_bits_16(protocol->decoded_data, 41, 16),
card_len);
// XOR Key, CRC and Profile
furi_string_cat_printf(
result,
"XOR: %hhu CRC: %hhu P: %04hX",
xor_code,
crc_code,
bit_lib_get_bits_16(protocol->decoded_data, 16, 16));
} else if(card_len == 36) { // 36 Bit card
// Print FC, Card and Length
furi_string_cat_printf(
result,
"FC: %u Card: %u LEN: %hhu\n",
bit_lib_get_bits_16(protocol->decoded_data, 33, 14),
bit_lib_get_bits_16(protocol->decoded_data, 51, 16),
card_len);
// XOR Key, CRC and Profile
furi_string_cat_printf(
result,
"XOR: %hhu CRC: %hhu P: %04hX",
xor_code,
crc_code,
bit_lib_get_bits_16(protocol->decoded_data, 16, 16));
} else {
furi_string_cat_printf(result, "Read Error\n");
}
}
bool protocol_gproxii_write_data(ProtocolGProxII* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_MODULATION_BIPHASE | LFRFID_T5577_BITRATE_RF_64 |
(3 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = bit_lib_get_bits_32(protocol->data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->data, 32, 32);
request->t5577.block[3] = bit_lib_get_bits_32(protocol->data, 64, 32);
request->t5577.blocks_to_write = 4;
result = true;
}
return result;
}
const ProtocolBase protocol_gproxii = {
.name = "GProxII",
.manufacturer = "Guardall",
.data_size = GPROXII_DATA_SIZE,
.features = LFRFIDFeatureASK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_gproxii_alloc,
.free = (ProtocolFree)protocol_gproxii_free,
.get_data = (ProtocolGetData)protocol_gproxii_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_gproxii_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_gproxii_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_gproxii_encoder_start,
.yield = (ProtocolEncoderYield)protocol_gproxii_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_gproxii_render_data,
.render_brief_data = (ProtocolRenderData)protocol_gproxii_render_data,
.write_data = (ProtocolWriteData)protocol_gproxii_write_data,
};