unleashed-firmware/lib/lfrfid/lfrfid_raw_worker.c
あく 3de856f8d5
[FL-3295] FuriHal: add bus abstraction (#2614)
* FuriHal: add bus abstraction and port some subsystem to it
* Make PVS happy, cleanup code
* Update API symbols for f18
* F18: backport bus changes from f7
* Revert to STOP2 sleep mode
* Fix downgrading the firmware via updater
* Port iButton TIM1 to furi_hal_bus
* Port Infrared TIM1 and TIM2 to furi_hal_bus
* Just enable the timer bus
* Port furi_hal_pwm to bus API
* Fix include statement
* Port furi_hal_rfid to bus API
* Port furi_hal_subghz and others to bus API
* Remove unneeded include
* Improve furi_hal_infrared defines
* Reset LPTIM1 via furi_hal_bus API
* Crash when trying to enable an already enabled peripheral
* Better defines
* Improved checks
* Lots of macro wrappers
* Copy spi changes for f18
* Fix crashes in LFRFID system
* Fix crashes in NFC system
* Improve comments
* Create FuriHalBus.md
* Update FuriHalBus.md
* Fix crash when launching updater
* Documentation: couple small fixes in FuriHalBus
* FuriHal: fix copypaste in furi_hal_rfid_tim_reset
* FuriHal: reset radio core related peripherals on restart
* FuriHalBus: is enabled routine and bug fix for uart
* RFID HAL: accomodate furi hal bus

Co-authored-by: Georgii Surkov <georgii.surkov@outlook.com>
Co-authored-by: Georgii Surkov <37121527+gsurkov@users.noreply.github.com>
Co-authored-by: SG <who.just.the.doctor@gmail.com>
2023-05-30 01:05:57 +09:00

344 lines
10 KiB
C

#include <furi_hal_rfid.h>
#include <toolbox/stream/file_stream.h>
#include <toolbox/buffer_stream.h>
#include <toolbox/varint.h>
#include "lfrfid_raw_worker.h"
#include "lfrfid_raw_file.h"
#include "tools/varint_pair.h"
#define EMULATE_BUFFER_SIZE 1024
#define RFID_DATA_BUFFER_SIZE 2048
#define READ_DATA_BUFFER_COUNT 4
#define TAG_EMULATE "RAW EMULATE"
// emulate mode
typedef struct {
size_t overrun_count;
FuriStreamBuffer* stream;
} RfidEmulateCtx;
typedef struct {
uint32_t emulate_buffer_arr[EMULATE_BUFFER_SIZE];
uint32_t emulate_buffer_ccr[EMULATE_BUFFER_SIZE];
RfidEmulateCtx ctx;
} LFRFIDRawWorkerEmulateData;
typedef enum {
HalfTransfer,
TransferComplete,
} LFRFIDRawEmulateDMAEvent;
// read mode
#define READ_TEMP_DATA_SIZE 10
typedef struct {
BufferStream* stream;
VarintPair* pair;
} LFRFIDRawWorkerReadData;
// main worker
struct LFRFIDRawWorker {
FuriString* file_path;
FuriThread* thread;
FuriEventFlag* events;
LFRFIDWorkerEmulateRawCallback emulate_callback;
LFRFIDWorkerReadRawCallback read_callback;
void* context;
float frequency;
float duty_cycle;
};
typedef enum {
LFRFIDRawWorkerEventStop,
} LFRFIDRawWorkerEvent;
static int32_t lfrfid_raw_read_worker_thread(void* thread_context);
static int32_t lfrfid_raw_emulate_worker_thread(void* thread_context);
LFRFIDRawWorker* lfrfid_raw_worker_alloc() {
LFRFIDRawWorker* worker = malloc(sizeof(LFRFIDRawWorker));
worker->thread = furi_thread_alloc_ex("LfrfidRawWorker", 2048, NULL, worker);
worker->events = furi_event_flag_alloc(NULL);
worker->file_path = furi_string_alloc();
return worker;
}
void lfrfid_raw_worker_free(LFRFIDRawWorker* worker) {
furi_thread_free(worker->thread);
furi_event_flag_free(worker->events);
furi_string_free(worker->file_path);
free(worker);
}
void lfrfid_raw_worker_start_read(
LFRFIDRawWorker* worker,
const char* file_path,
float freq,
float duty_cycle,
LFRFIDWorkerReadRawCallback callback,
void* context) {
furi_check(furi_thread_get_state(worker->thread) == FuriThreadStateStopped);
furi_string_set(worker->file_path, file_path);
worker->frequency = freq;
worker->duty_cycle = duty_cycle;
worker->read_callback = callback;
worker->context = context;
furi_thread_set_callback(worker->thread, lfrfid_raw_read_worker_thread);
furi_thread_start(worker->thread);
}
void lfrfid_raw_worker_start_emulate(
LFRFIDRawWorker* worker,
const char* file_path,
LFRFIDWorkerEmulateRawCallback callback,
void* context) {
furi_check(furi_thread_get_state(worker->thread) == FuriThreadStateStopped);
furi_string_set(worker->file_path, file_path);
worker->emulate_callback = callback;
worker->context = context;
furi_thread_set_callback(worker->thread, lfrfid_raw_emulate_worker_thread);
furi_thread_start(worker->thread);
}
void lfrfid_raw_worker_stop(LFRFIDRawWorker* worker) {
worker->emulate_callback = NULL;
worker->context = NULL;
worker->read_callback = NULL;
furi_event_flag_set(worker->events, 1 << LFRFIDRawWorkerEventStop);
furi_thread_join(worker->thread);
}
static void lfrfid_raw_worker_capture(bool level, uint32_t duration, void* context) {
LFRFIDRawWorkerReadData* ctx = context;
bool need_to_send = varint_pair_pack(ctx->pair, level, duration);
if(need_to_send) {
buffer_stream_send_from_isr(
ctx->stream, varint_pair_get_data(ctx->pair), varint_pair_get_size(ctx->pair));
varint_pair_reset(ctx->pair);
}
}
static int32_t lfrfid_raw_read_worker_thread(void* thread_context) {
LFRFIDRawWorker* worker = (LFRFIDRawWorker*)thread_context;
Storage* storage = furi_record_open(RECORD_STORAGE);
LFRFIDRawFile* file = lfrfid_raw_file_alloc(storage);
const char* filename = furi_string_get_cstr(worker->file_path);
bool file_valid = lfrfid_raw_file_open_write(file, filename);
LFRFIDRawWorkerReadData* data = malloc(sizeof(LFRFIDRawWorkerReadData));
data->stream = buffer_stream_alloc(RFID_DATA_BUFFER_SIZE, READ_DATA_BUFFER_COUNT);
data->pair = varint_pair_alloc();
if(file_valid) {
// write header
file_valid = lfrfid_raw_file_write_header(
file, worker->frequency, worker->duty_cycle, RFID_DATA_BUFFER_SIZE);
}
if(file_valid) {
// setup carrier
furi_hal_rfid_tim_read_start(worker->frequency, worker->duty_cycle);
// stabilize detector
furi_delay_ms(1500);
// start capture
furi_hal_rfid_tim_read_capture_start(lfrfid_raw_worker_capture, data);
while(1) {
Buffer* buffer = buffer_stream_receive(data->stream, 100);
if(buffer != NULL) {
file_valid = lfrfid_raw_file_write_buffer(
file, buffer_get_data(buffer), buffer_get_size(buffer));
buffer_reset(buffer);
}
if(!file_valid) {
if(worker->read_callback != NULL) {
// message file_error to worker
worker->read_callback(LFRFIDWorkerReadRawFileError, worker->context);
}
break;
}
if(buffer_stream_get_overrun_count(data->stream) > 0 &&
worker->read_callback != NULL) {
// message overrun to worker
worker->read_callback(LFRFIDWorkerReadRawOverrun, worker->context);
}
uint32_t flags = furi_event_flag_get(worker->events);
if(FURI_BIT(flags, LFRFIDRawWorkerEventStop)) {
break;
}
}
furi_hal_rfid_tim_read_capture_stop();
furi_hal_rfid_tim_read_stop();
} else {
if(worker->read_callback != NULL) {
// message file_error to worker
worker->read_callback(LFRFIDWorkerReadRawFileError, worker->context);
}
}
if(!file_valid) {
const uint32_t available_flags = (1 << LFRFIDRawWorkerEventStop);
while(true) {
uint32_t flags = furi_event_flag_wait(
worker->events, available_flags, FuriFlagWaitAny, FuriWaitForever);
if(FURI_BIT(flags, LFRFIDRawWorkerEventStop)) {
break;
}
}
}
varint_pair_free(data->pair);
buffer_stream_free(data->stream);
lfrfid_raw_file_free(file);
furi_record_close(RECORD_STORAGE);
free(data);
return 0;
}
static void rfid_emulate_dma_isr(bool half, void* context) {
RfidEmulateCtx* ctx = context;
uint32_t flag = half ? HalfTransfer : TransferComplete;
size_t len = furi_stream_buffer_send(ctx->stream, &flag, sizeof(uint32_t), 0);
if(len != sizeof(uint32_t)) {
ctx->overrun_count++;
}
}
static int32_t lfrfid_raw_emulate_worker_thread(void* thread_context) {
LFRFIDRawWorker* worker = thread_context;
bool file_valid = true;
LFRFIDRawWorkerEmulateData* data = malloc(sizeof(LFRFIDRawWorkerEmulateData));
Storage* storage = furi_record_open(RECORD_STORAGE);
data->ctx.overrun_count = 0;
data->ctx.stream = furi_stream_buffer_alloc(sizeof(uint32_t), sizeof(uint32_t));
LFRFIDRawFile* file = lfrfid_raw_file_alloc(storage);
do {
file_valid = lfrfid_raw_file_open_read(file, furi_string_get_cstr(worker->file_path));
if(!file_valid) break;
file_valid = lfrfid_raw_file_read_header(file, &worker->frequency, &worker->duty_cycle);
if(!file_valid) break;
for(size_t i = 0; i < EMULATE_BUFFER_SIZE; i++) {
file_valid = lfrfid_raw_file_read_pair(
file, &data->emulate_buffer_arr[i], &data->emulate_buffer_ccr[i], NULL);
if(!file_valid) break;
data->emulate_buffer_arr[i] /= 8;
data->emulate_buffer_arr[i] -= 1;
data->emulate_buffer_ccr[i] /= 8;
}
} while(false);
furi_hal_rfid_tim_emulate_dma_start(
data->emulate_buffer_arr,
data->emulate_buffer_ccr,
EMULATE_BUFFER_SIZE,
rfid_emulate_dma_isr,
&data->ctx);
if(!file_valid && worker->emulate_callback != NULL) {
// message file_error to worker
worker->emulate_callback(LFRFIDWorkerEmulateRawFileError, worker->context);
}
if(file_valid) {
uint32_t flag = 0;
while(true) {
size_t size =
furi_stream_buffer_receive(data->ctx.stream, &flag, sizeof(uint32_t), 100);
if(size == sizeof(uint32_t)) {
size_t start = 0;
if(flag == TransferComplete) {
start = (EMULATE_BUFFER_SIZE / 2);
}
for(size_t i = 0; i < (EMULATE_BUFFER_SIZE / 2); i++) {
file_valid = lfrfid_raw_file_read_pair(
file,
&data->emulate_buffer_arr[start + i],
&data->emulate_buffer_ccr[start + i],
NULL);
if(!file_valid) break;
data->emulate_buffer_arr[i] /= 8;
data->emulate_buffer_arr[i] -= 1;
data->emulate_buffer_ccr[i] /= 8;
}
} else if(size != 0) {
data->ctx.overrun_count++;
}
if(!file_valid) {
if(worker->emulate_callback != NULL) {
// message file_error to worker
worker->emulate_callback(LFRFIDWorkerEmulateRawFileError, worker->context);
}
break;
}
if(data->ctx.overrun_count > 0 && worker->emulate_callback != NULL) {
// message overrun to worker
worker->emulate_callback(LFRFIDWorkerEmulateRawOverrun, worker->context);
}
uint32_t flags = furi_event_flag_get(worker->events);
if(FURI_BIT(flags, LFRFIDRawWorkerEventStop)) {
break;
};
}
}
furi_hal_rfid_tim_emulate_dma_stop();
if(!file_valid) {
const uint32_t available_flags = (1 << LFRFIDRawWorkerEventStop);
while(true) {
uint32_t flags = furi_event_flag_wait(
worker->events, available_flags, FuriFlagWaitAny, FuriWaitForever);
if(FURI_BIT(flags, LFRFIDRawWorkerEventStop)) {
break;
};
}
}
if(data->ctx.overrun_count) {
FURI_LOG_E(TAG_EMULATE, "overruns: %zu", data->ctx.overrun_count);
}
furi_stream_buffer_free(data->ctx.stream);
lfrfid_raw_file_free(file);
furi_record_close(RECORD_STORAGE);
free(data);
return 0;
}