unleashed-firmware/applications/unit_tests/lfrfid/bit_lib_test.c
SG 9bfb641d3e
[FL-2529][FL-1628] New LF-RFID subsystem (#1601)
* Makefile: unit tests pack
* RFID: pulse joiner and its unit test
* Move pulse protocol helpers to appropriate place
* Drop pulse_joiner tests
* Generic protocol, protocols dictionary, unit test
* Protocol dict unit test
* iButton: protocols dictionary
* Lib: varint
* Lib: profiler
* Unit test: varint
* rfid: worker mockup
* LFRFID: em4100 unit test
* Storage: file_exist function
* rfid: fsk osc
* rfid: generic fsk demodulator
* rfid: protocol em4100
* rfid: protocol h10301
* rfid: protocol io prox xsf
* Unit test: rfid protocols
* rfid: new hal
* rfid: raw worker
* Unit test: fix error output
* rfid: worker
* rfid: plain c cli
* fw: migrate to scons
* lfrfid: full io prox support
* unit test: io prox protocol
* SubGHZ: move bit defines to source
* FSK oscillator: level duration compability
* libs: bit manipulation library
* lfrfid: ioprox protocol, use bit library and new level duration method of FSK ocillator
* bit lib: unit tests
* Bit lib: parity tests, remove every nth bit, copy bits
* Lfrfid: awid protocol
* bit lib: uint16 and uint32 getters, unit tests
* lfrfid: FDX-B read, draft version
* Minunit: better memeq assert
* bit lib: reverse, print, print regions
* Protocol dict: get protocol features, get protocol validate count
* lfrfid worker: improved read
* lfrfid raw worker: psk support
* Cli: rfid plain C cli
* protocol AWID: render
* protocol em4100: render
* protocol h10301: render
* protocol indala26: support every indala 26 scramble
* Protocol IO Prox: render
* Protocol FDX-B: advanced read
* lfrfid: remove unused test function
* lfrfid: fix os primitives
* bit lib: crc16 and unit tests
* FDX-B: save data
* lfrfid worker: increase stream size. Alloc raw worker only when needed.
* lfrfid: indala26 emulation
* lfrfid: prepare to write
* lfrfid: fdx-b emulation
* lfrfid: awid, ioprox write
* lfrfid: write t55xx w\o validation
* lfrfid: better t55xx block0 handling
* lfrfid: use new t5577 functions in worker
* lfrfid: improve protocol description
* lfrfid: write and verify
* lfrfid: delete cpp cli
* lfrfid: improve worker usage
* lfrfid-app: step to new worker
* lfrfid: old indala (I40134) load fallback
* lfrfid: indala26, recover wrong synced data
* lfrfid: remove old worker
* lfrfid app: dummy read screen
* lfrfid app: less dummy read screen
* lfrfid: generic 96-bit HID protocol (covers up to HID 37-bit)
* rename
* lfrfid: improve indala26 read
* lfrfid: generic 192-bit HID protocol (covers all HID extended)
* lfrfid: TODO about HID render
* lfrfid: new protocol FDX-A
* lfrfid-app: correct worker stop on exit
* misc fixes
* lfrfid: FDX-A and HID distinguishability has been fixed.
* lfrfid: decode HID size header and render it (#1612)
* lfrfid: rename HID96 and HID192 to HIDProx and HIDExt
* lfrfid: extra actions scene
* lfrfid: decode generic HID Proximity size lazily (#1618)
* lib: stream of data buffers concept
* lfrfid: raw file helper
* lfrfid: changed raw worker api
* lfrfid: packed varint pair
* lfrfid: read stream speedup
* lfrfid app: show read mode
* Documentation
* lfrfid app: raw read gui
* lfrfid app: storage check for raw read
* memleak fix
* review fixes
* lfrfid app: read blink color
* lfrfid app: reset key name after read
* review fixes
* lfrfid app: fix copypasted text
* review fixes
* lfrfid: disable debug gpio
* lfrfid: card detection events
* lfrfid: change validation color from magenta to green
* Update core_defines.
* lfrfid: prefix fdx-b id by zeroes
* lfrfid: parse up to 43-bit HID Proximity keys (#1640)
* Fbt: downgrade toolchain and fix PS1
* lfrfid: fix unit tests
* lfrfid app: remove printf
* lfrfid: indala26, use bit 55 as data
* lfrfid: indala26, better brief format
* lfrfid: indala26, loading fallback
* lfrfid: read timing tuning

Co-authored-by: James Ide <ide@users.noreply.github.com>
Co-authored-by: あく <alleteam@gmail.com>
2022-08-24 00:57:39 +09:00

473 lines
No EOL
23 KiB
C

#include <furi.h>
#include "../minunit.h"
#include <lfrfid/tools/bit_lib.h>
MU_TEST(test_bit_lib_increment_index) {
uint32_t index = 0;
// test increment
for(uint32_t i = 0; i < 31; ++i) {
bit_lib_increment_index(index, 32);
mu_assert_int_eq(i + 1, index);
}
// test wrap around
for(uint32_t i = 0; i < 512; ++i) {
bit_lib_increment_index(index, 32);
mu_assert_int_less_than(32, index);
}
}
MU_TEST(test_bit_lib_is_set) {
uint32_t value = 0x0000FFFF;
for(uint32_t i = 0; i < 16; ++i) {
mu_check(bit_lib_bit_is_set(value, i));
mu_check(!bit_lib_bit_is_not_set(value, i));
}
for(uint32_t i = 16; i < 32; ++i) {
mu_check(!bit_lib_bit_is_set(value, i));
mu_check(bit_lib_bit_is_not_set(value, i));
}
}
MU_TEST(test_bit_lib_push) {
#define TEST_BIT_LIB_PUSH_DATA_SIZE 4
uint8_t data[TEST_BIT_LIB_PUSH_DATA_SIZE] = {0};
uint8_t expected_data_1[TEST_BIT_LIB_PUSH_DATA_SIZE] = {0x00, 0x00, 0x0F, 0xFF};
uint8_t expected_data_2[TEST_BIT_LIB_PUSH_DATA_SIZE] = {0x00, 0xFF, 0xF0, 0x00};
uint8_t expected_data_3[TEST_BIT_LIB_PUSH_DATA_SIZE] = {0xFF, 0x00, 0x00, 0xFF};
uint8_t expected_data_4[TEST_BIT_LIB_PUSH_DATA_SIZE] = {0xFF, 0xFF, 0xFF, 0xFF};
uint8_t expected_data_5[TEST_BIT_LIB_PUSH_DATA_SIZE] = {0x00, 0x00, 0x00, 0x00};
uint8_t expected_data_6[TEST_BIT_LIB_PUSH_DATA_SIZE] = {0xCC, 0xCC, 0xCC, 0xCC};
for(uint32_t i = 0; i < 12; ++i) {
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, true);
}
mu_assert_mem_eq(expected_data_1, data, TEST_BIT_LIB_PUSH_DATA_SIZE);
for(uint32_t i = 0; i < 12; ++i) {
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, false);
}
mu_assert_mem_eq(expected_data_2, data, TEST_BIT_LIB_PUSH_DATA_SIZE);
for(uint32_t i = 0; i < 4; ++i) {
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, false);
}
for(uint32_t i = 0; i < 8; ++i) {
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, true);
}
mu_assert_mem_eq(expected_data_3, data, TEST_BIT_LIB_PUSH_DATA_SIZE);
for(uint32_t i = 0; i < TEST_BIT_LIB_PUSH_DATA_SIZE * 8; ++i) {
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, true);
}
mu_assert_mem_eq(expected_data_4, data, TEST_BIT_LIB_PUSH_DATA_SIZE);
for(uint32_t i = 0; i < TEST_BIT_LIB_PUSH_DATA_SIZE * 8; ++i) {
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, false);
}
mu_assert_mem_eq(expected_data_5, data, TEST_BIT_LIB_PUSH_DATA_SIZE);
for(uint32_t i = 0; i < TEST_BIT_LIB_PUSH_DATA_SIZE * 2; ++i) {
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, true);
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, true);
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, false);
bit_lib_push_bit(data, TEST_BIT_LIB_PUSH_DATA_SIZE, false);
}
mu_assert_mem_eq(expected_data_6, data, TEST_BIT_LIB_PUSH_DATA_SIZE);
}
MU_TEST(test_bit_lib_set_bit) {
uint8_t value[2] = {0x00, 0xFF};
bit_lib_set_bit(value, 15, false);
mu_assert_mem_eq(value, ((uint8_t[]){0x00, 0xFE}), 2);
bit_lib_set_bit(value, 14, false);
mu_assert_mem_eq(value, ((uint8_t[]){0x00, 0xFC}), 2);
bit_lib_set_bit(value, 13, false);
mu_assert_mem_eq(value, ((uint8_t[]){0x00, 0xF8}), 2);
bit_lib_set_bit(value, 12, false);
mu_assert_mem_eq(value, ((uint8_t[]){0x00, 0xF0}), 2);
bit_lib_set_bit(value, 11, false);
mu_assert_mem_eq(value, ((uint8_t[]){0x00, 0xE0}), 2);
bit_lib_set_bit(value, 10, false);
mu_assert_mem_eq(value, ((uint8_t[]){0x00, 0xC0}), 2);
bit_lib_set_bit(value, 9, false);
mu_assert_mem_eq(value, ((uint8_t[]){0x00, 0x80}), 2);
bit_lib_set_bit(value, 8, false);
mu_assert_mem_eq(value, ((uint8_t[]){0x00, 0x00}), 2);
bit_lib_set_bit(value, 7, true);
mu_assert_mem_eq(value, ((uint8_t[]){0x01, 0x00}), 2);
bit_lib_set_bit(value, 6, true);
mu_assert_mem_eq(value, ((uint8_t[]){0x03, 0x00}), 2);
bit_lib_set_bit(value, 5, true);
mu_assert_mem_eq(value, ((uint8_t[]){0x07, 0x00}), 2);
bit_lib_set_bit(value, 4, true);
mu_assert_mem_eq(value, ((uint8_t[]){0x0F, 0x00}), 2);
bit_lib_set_bit(value, 3, true);
mu_assert_mem_eq(value, ((uint8_t[]){0x1F, 0x00}), 2);
bit_lib_set_bit(value, 2, true);
mu_assert_mem_eq(value, ((uint8_t[]){0x3F, 0x00}), 2);
bit_lib_set_bit(value, 1, true);
mu_assert_mem_eq(value, ((uint8_t[]){0x7F, 0x00}), 2);
bit_lib_set_bit(value, 0, true);
mu_assert_mem_eq(value, ((uint8_t[]){0xFF, 0x00}), 2);
}
MU_TEST(test_bit_lib_set_bits) {
uint8_t value[2] = {0b00000000, 0b11111111};
// set 4 bits to 0b0100 from 12 index
bit_lib_set_bits(value, 12, 0b0100, 4);
// [0100]
mu_assert_mem_eq(value, ((uint8_t[]){0b00000000, 0b11110100}), 2);
// set 2 bits to 0b11 from 11 index
bit_lib_set_bits(value, 11, 0b11, 2);
// [11]
mu_assert_mem_eq(value, ((uint8_t[]){0b00000000, 0b11111100}), 2);
// set 3 bits to 0b111 from 0 index
bit_lib_set_bits(value, 0, 0b111, 3);
// [111]
mu_assert_mem_eq(value, ((uint8_t[]){0b11100000, 0b11111100}), 2);
// set 8 bits to 0b11111000 from 3 index
bit_lib_set_bits(value, 3, 0b11111000, 8);
// [11111 000]
mu_assert_mem_eq(value, ((uint8_t[]){0b11111111, 0b00011100}), 2);
}
MU_TEST(test_bit_lib_get_bit) {
uint8_t value[2] = {0b00000000, 0b11111111};
for(uint32_t i = 0; i < 8; ++i) {
mu_check(bit_lib_get_bit(value, i) == false);
}
for(uint32_t i = 8; i < 16; ++i) {
mu_check(bit_lib_get_bit(value, i) == true);
}
}
MU_TEST(test_bit_lib_get_bits) {
uint8_t value[2] = {0b00000000, 0b11111111};
mu_assert_int_eq(0b00000000, bit_lib_get_bits(value, 0, 8));
mu_assert_int_eq(0b00000001, bit_lib_get_bits(value, 1, 8));
mu_assert_int_eq(0b00000011, bit_lib_get_bits(value, 2, 8));
mu_assert_int_eq(0b00000111, bit_lib_get_bits(value, 3, 8));
mu_assert_int_eq(0b00001111, bit_lib_get_bits(value, 4, 8));
mu_assert_int_eq(0b00011111, bit_lib_get_bits(value, 5, 8));
mu_assert_int_eq(0b00111111, bit_lib_get_bits(value, 6, 8));
mu_assert_int_eq(0b01111111, bit_lib_get_bits(value, 7, 8));
mu_assert_int_eq(0b11111111, bit_lib_get_bits(value, 8, 8));
}
MU_TEST(test_bit_lib_get_bits_16) {
uint8_t value[2] = {0b00001001, 0b10110001};
mu_assert_int_eq(0b0, bit_lib_get_bits_16(value, 0, 1));
mu_assert_int_eq(0b00, bit_lib_get_bits_16(value, 0, 2));
mu_assert_int_eq(0b000, bit_lib_get_bits_16(value, 0, 3));
mu_assert_int_eq(0b0000, bit_lib_get_bits_16(value, 0, 4));
mu_assert_int_eq(0b00001, bit_lib_get_bits_16(value, 0, 5));
mu_assert_int_eq(0b000010, bit_lib_get_bits_16(value, 0, 6));
mu_assert_int_eq(0b0000100, bit_lib_get_bits_16(value, 0, 7));
mu_assert_int_eq(0b00001001, bit_lib_get_bits_16(value, 0, 8));
mu_assert_int_eq(0b000010011, bit_lib_get_bits_16(value, 0, 9));
mu_assert_int_eq(0b0000100110, bit_lib_get_bits_16(value, 0, 10));
mu_assert_int_eq(0b00001001101, bit_lib_get_bits_16(value, 0, 11));
mu_assert_int_eq(0b000010011011, bit_lib_get_bits_16(value, 0, 12));
mu_assert_int_eq(0b0000100110110, bit_lib_get_bits_16(value, 0, 13));
mu_assert_int_eq(0b00001001101100, bit_lib_get_bits_16(value, 0, 14));
mu_assert_int_eq(0b000010011011000, bit_lib_get_bits_16(value, 0, 15));
mu_assert_int_eq(0b0000100110110001, bit_lib_get_bits_16(value, 0, 16));
}
MU_TEST(test_bit_lib_get_bits_32) {
uint8_t value[4] = {0b00001001, 0b10110001, 0b10001100, 0b01100010};
mu_assert_int_eq(0b0, bit_lib_get_bits_32(value, 0, 1));
mu_assert_int_eq(0b00, bit_lib_get_bits_32(value, 0, 2));
mu_assert_int_eq(0b000, bit_lib_get_bits_32(value, 0, 3));
mu_assert_int_eq(0b0000, bit_lib_get_bits_32(value, 0, 4));
mu_assert_int_eq(0b00001, bit_lib_get_bits_32(value, 0, 5));
mu_assert_int_eq(0b000010, bit_lib_get_bits_32(value, 0, 6));
mu_assert_int_eq(0b0000100, bit_lib_get_bits_32(value, 0, 7));
mu_assert_int_eq(0b00001001, bit_lib_get_bits_32(value, 0, 8));
mu_assert_int_eq(0b000010011, bit_lib_get_bits_32(value, 0, 9));
mu_assert_int_eq(0b0000100110, bit_lib_get_bits_32(value, 0, 10));
mu_assert_int_eq(0b00001001101, bit_lib_get_bits_32(value, 0, 11));
mu_assert_int_eq(0b000010011011, bit_lib_get_bits_32(value, 0, 12));
mu_assert_int_eq(0b0000100110110, bit_lib_get_bits_32(value, 0, 13));
mu_assert_int_eq(0b00001001101100, bit_lib_get_bits_32(value, 0, 14));
mu_assert_int_eq(0b000010011011000, bit_lib_get_bits_32(value, 0, 15));
mu_assert_int_eq(0b0000100110110001, bit_lib_get_bits_32(value, 0, 16));
mu_assert_int_eq(0b00001001101100011, bit_lib_get_bits_32(value, 0, 17));
mu_assert_int_eq(0b000010011011000110, bit_lib_get_bits_32(value, 0, 18));
mu_assert_int_eq(0b0000100110110001100, bit_lib_get_bits_32(value, 0, 19));
mu_assert_int_eq(0b00001001101100011000, bit_lib_get_bits_32(value, 0, 20));
mu_assert_int_eq(0b000010011011000110001, bit_lib_get_bits_32(value, 0, 21));
mu_assert_int_eq(0b0000100110110001100011, bit_lib_get_bits_32(value, 0, 22));
mu_assert_int_eq(0b00001001101100011000110, bit_lib_get_bits_32(value, 0, 23));
mu_assert_int_eq(0b000010011011000110001100, bit_lib_get_bits_32(value, 0, 24));
mu_assert_int_eq(0b0000100110110001100011000, bit_lib_get_bits_32(value, 0, 25));
mu_assert_int_eq(0b00001001101100011000110001, bit_lib_get_bits_32(value, 0, 26));
mu_assert_int_eq(0b000010011011000110001100011, bit_lib_get_bits_32(value, 0, 27));
mu_assert_int_eq(0b0000100110110001100011000110, bit_lib_get_bits_32(value, 0, 28));
mu_assert_int_eq(0b00001001101100011000110001100, bit_lib_get_bits_32(value, 0, 29));
mu_assert_int_eq(0b000010011011000110001100011000, bit_lib_get_bits_32(value, 0, 30));
mu_assert_int_eq(0b0000100110110001100011000110001, bit_lib_get_bits_32(value, 0, 31));
mu_assert_int_eq(0b00001001101100011000110001100010, bit_lib_get_bits_32(value, 0, 32));
}
MU_TEST(test_bit_lib_test_parity_u32) {
// test even parity
mu_assert_int_eq(bit_lib_test_parity_32(0b00000000, BitLibParityEven), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000001, BitLibParityEven), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000010, BitLibParityEven), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000011, BitLibParityEven), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000100, BitLibParityEven), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000101, BitLibParityEven), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000110, BitLibParityEven), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000111, BitLibParityEven), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001000, BitLibParityEven), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001001, BitLibParityEven), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001010, BitLibParityEven), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001011, BitLibParityEven), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001100, BitLibParityEven), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001101, BitLibParityEven), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001110, BitLibParityEven), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001111, BitLibParityEven), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00010000, BitLibParityEven), 1);
// test odd parity
mu_assert_int_eq(bit_lib_test_parity_32(0b00000000, BitLibParityOdd), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000001, BitLibParityOdd), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000010, BitLibParityOdd), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000011, BitLibParityOdd), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000100, BitLibParityOdd), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000101, BitLibParityOdd), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000110, BitLibParityOdd), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00000111, BitLibParityOdd), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001000, BitLibParityOdd), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001001, BitLibParityOdd), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001010, BitLibParityOdd), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001011, BitLibParityOdd), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001100, BitLibParityOdd), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001101, BitLibParityOdd), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001110, BitLibParityOdd), 0);
mu_assert_int_eq(bit_lib_test_parity_32(0b00001111, BitLibParityOdd), 1);
mu_assert_int_eq(bit_lib_test_parity_32(0b00010000, BitLibParityOdd), 0);
}
MU_TEST(test_bit_lib_test_parity) {
// next data contains valid parity for 1-3 nibble and invalid for 4 nibble
uint8_t data_always_0_parity[2] = {0b11101110, 0b11101111};
uint8_t data_always_1_parity[2] = {0b00010001, 0b00010000};
uint8_t data_always_odd_parity[2] = {0b00000011, 0b11110111};
uint8_t data_always_even_parity[2] = {0b00010111, 0b10110011};
// test alawys 0 parity
mu_check(bit_lib_test_parity(data_always_0_parity, 0, 12, BitLibParityAlways0, 4));
mu_check(bit_lib_test_parity(data_always_0_parity, 4, 8, BitLibParityAlways0, 4));
mu_check(bit_lib_test_parity(data_always_0_parity, 8, 4, BitLibParityAlways0, 4));
mu_check(bit_lib_test_parity(data_always_1_parity, 12, 4, BitLibParityAlways0, 4));
mu_check(!bit_lib_test_parity(data_always_0_parity, 0, 16, BitLibParityAlways0, 4));
mu_check(!bit_lib_test_parity(data_always_0_parity, 4, 12, BitLibParityAlways0, 4));
mu_check(!bit_lib_test_parity(data_always_0_parity, 8, 8, BitLibParityAlways0, 4));
mu_check(!bit_lib_test_parity(data_always_0_parity, 12, 4, BitLibParityAlways0, 4));
// test alawys 1 parity
mu_check(bit_lib_test_parity(data_always_1_parity, 0, 12, BitLibParityAlways1, 4));
mu_check(bit_lib_test_parity(data_always_1_parity, 4, 8, BitLibParityAlways1, 4));
mu_check(bit_lib_test_parity(data_always_1_parity, 8, 4, BitLibParityAlways1, 4));
mu_check(bit_lib_test_parity(data_always_0_parity, 12, 4, BitLibParityAlways1, 4));
mu_check(!bit_lib_test_parity(data_always_1_parity, 0, 16, BitLibParityAlways1, 4));
mu_check(!bit_lib_test_parity(data_always_1_parity, 4, 12, BitLibParityAlways1, 4));
mu_check(!bit_lib_test_parity(data_always_1_parity, 8, 8, BitLibParityAlways1, 4));
mu_check(!bit_lib_test_parity(data_always_1_parity, 12, 4, BitLibParityAlways1, 4));
// test odd parity
mu_check(bit_lib_test_parity(data_always_odd_parity, 0, 12, BitLibParityOdd, 4));
mu_check(bit_lib_test_parity(data_always_odd_parity, 4, 8, BitLibParityOdd, 4));
mu_check(bit_lib_test_parity(data_always_odd_parity, 8, 4, BitLibParityOdd, 4));
mu_check(bit_lib_test_parity(data_always_even_parity, 12, 4, BitLibParityOdd, 4));
mu_check(!bit_lib_test_parity(data_always_odd_parity, 0, 16, BitLibParityOdd, 4));
mu_check(!bit_lib_test_parity(data_always_odd_parity, 4, 12, BitLibParityOdd, 4));
mu_check(!bit_lib_test_parity(data_always_odd_parity, 8, 8, BitLibParityOdd, 4));
mu_check(!bit_lib_test_parity(data_always_odd_parity, 12, 4, BitLibParityOdd, 4));
// test even parity
mu_check(bit_lib_test_parity(data_always_even_parity, 0, 12, BitLibParityEven, 4));
mu_check(bit_lib_test_parity(data_always_even_parity, 4, 8, BitLibParityEven, 4));
mu_check(bit_lib_test_parity(data_always_even_parity, 8, 4, BitLibParityEven, 4));
mu_check(bit_lib_test_parity(data_always_odd_parity, 12, 4, BitLibParityEven, 4));
mu_check(!bit_lib_test_parity(data_always_even_parity, 0, 16, BitLibParityEven, 4));
mu_check(!bit_lib_test_parity(data_always_even_parity, 4, 12, BitLibParityEven, 4));
mu_check(!bit_lib_test_parity(data_always_even_parity, 8, 8, BitLibParityEven, 4));
mu_check(!bit_lib_test_parity(data_always_even_parity, 12, 4, BitLibParityEven, 4));
}
MU_TEST(test_bit_lib_remove_bit_every_nth) {
// TODO: more tests
uint8_t data_i[1] = {0b00001111};
uint8_t data_o[1] = {0b00011111};
size_t length;
length = bit_lib_remove_bit_every_nth(data_i, 0, 8, 3);
mu_assert_int_eq(6, length);
mu_assert_mem_eq(data_o, data_i, 1);
}
MU_TEST(test_bit_lib_reverse_bits) {
uint8_t data_1_i[2] = {0b11001010, 0b00011111};
uint8_t data_1_o[2] = {0b11111000, 0b01010011};
// reverse bits [0..15]
bit_lib_reverse_bits(data_1_i, 0, 16);
mu_assert_mem_eq(data_1_o, data_1_i, 2);
uint8_t data_2_i[2] = {0b11001010, 0b00011111};
uint8_t data_2_o[2] = {0b11001000, 0b01011111};
// reverse bits [4..11]
bit_lib_reverse_bits(data_2_i, 4, 8);
mu_assert_mem_eq(data_2_o, data_2_i, 2);
}
MU_TEST(test_bit_lib_copy_bits) {
uint8_t data_1_i[2] = {0b11001010, 0b00011111};
uint8_t data_1_o[2] = {0};
// data_1_o[0..15] = data_1_i[0..15]
bit_lib_copy_bits(data_1_o, 0, 16, data_1_i, 0);
mu_assert_mem_eq(data_1_i, data_1_o, 2);
memset(data_1_o, 0, 2);
// data_1_o[4..11] = data_1_i[0..7]
bit_lib_copy_bits(data_1_o, 4, 8, data_1_i, 0);
mu_assert_mem_eq(((uint8_t[]){0b00001100, 0b10100000}), data_1_o, 2);
}
MU_TEST(test_bit_lib_get_bit_count) {
mu_assert_int_eq(0, bit_lib_get_bit_count(0));
mu_assert_int_eq(1, bit_lib_get_bit_count(0b1));
mu_assert_int_eq(1, bit_lib_get_bit_count(0b10));
mu_assert_int_eq(2, bit_lib_get_bit_count(0b11));
mu_assert_int_eq(4, bit_lib_get_bit_count(0b11000011));
mu_assert_int_eq(6, bit_lib_get_bit_count(0b11000011000011));
mu_assert_int_eq(8, bit_lib_get_bit_count(0b11111111));
mu_assert_int_eq(16, bit_lib_get_bit_count(0b11111110000000000000000111111111));
mu_assert_int_eq(32, bit_lib_get_bit_count(0b11111111111111111111111111111111));
}
MU_TEST(test_bit_lib_reverse_16_fast) {
mu_assert_int_eq(0b0000000000000000, bit_lib_reverse_16_fast(0b0000000000000000));
mu_assert_int_eq(0b1000000000000000, bit_lib_reverse_16_fast(0b0000000000000001));
mu_assert_int_eq(0b1100000000000000, bit_lib_reverse_16_fast(0b0000000000000011));
mu_assert_int_eq(0b0000100000001001, bit_lib_reverse_16_fast(0b1001000000010000));
}
MU_TEST(test_bit_lib_crc16) {
uint8_t data[9] = {'1', '2', '3', '4', '5', '6', '7', '8', '9'};
uint8_t data_size = 9;
// Algorithm
// Check Poly Init RefIn RefOut XorOut
// CRC-16/CCITT-FALSE
// 0x29B1 0x1021 0xFFFF false false 0x0000
mu_assert_int_eq(0x29B1, bit_lib_crc16(data, data_size, 0x1021, 0xFFFF, false, false, 0x0000));
// CRC-16/ARC
// 0xBB3D 0x8005 0x0000 true true 0x0000
mu_assert_int_eq(0xBB3D, bit_lib_crc16(data, data_size, 0x8005, 0x0000, true, true, 0x0000));
// CRC-16/AUG-CCITT
// 0xE5CC 0x1021 0x1D0F false false 0x0000
mu_assert_int_eq(0xE5CC, bit_lib_crc16(data, data_size, 0x1021, 0x1D0F, false, false, 0x0000));
// CRC-16/BUYPASS
// 0xFEE8 0x8005 0x0000 false false 0x0000
mu_assert_int_eq(0xFEE8, bit_lib_crc16(data, data_size, 0x8005, 0x0000, false, false, 0x0000));
// CRC-16/CDMA2000
// 0x4C06 0xC867 0xFFFF false false 0x0000
mu_assert_int_eq(0x4C06, bit_lib_crc16(data, data_size, 0xC867, 0xFFFF, false, false, 0x0000));
// CRC-16/DDS-110
// 0x9ECF 0x8005 0x800D false false 0x0000
mu_assert_int_eq(0x9ECF, bit_lib_crc16(data, data_size, 0x8005, 0x800D, false, false, 0x0000));
// CRC-16/DECT-R
// 0x007E 0x0589 0x0000 false false 0x0001
mu_assert_int_eq(0x007E, bit_lib_crc16(data, data_size, 0x0589, 0x0000, false, false, 0x0001));
// CRC-16/DECT-X
// 0x007F 0x0589 0x0000 false false 0x0000
mu_assert_int_eq(0x007F, bit_lib_crc16(data, data_size, 0x0589, 0x0000, false, false, 0x0000));
// CRC-16/DNP
// 0xEA82 0x3D65 0x0000 true true 0xFFFF
mu_assert_int_eq(0xEA82, bit_lib_crc16(data, data_size, 0x3D65, 0x0000, true, true, 0xFFFF));
// CRC-16/EN-13757
// 0xC2B7 0x3D65 0x0000 false false 0xFFFF
mu_assert_int_eq(0xC2B7, bit_lib_crc16(data, data_size, 0x3D65, 0x0000, false, false, 0xFFFF));
// CRC-16/GENIBUS
// 0xD64E 0x1021 0xFFFF false false 0xFFFF
mu_assert_int_eq(0xD64E, bit_lib_crc16(data, data_size, 0x1021, 0xFFFF, false, false, 0xFFFF));
// CRC-16/MAXIM
// 0x44C2 0x8005 0x0000 true true 0xFFFF
mu_assert_int_eq(0x44C2, bit_lib_crc16(data, data_size, 0x8005, 0x0000, true, true, 0xFFFF));
// CRC-16/MCRF4XX
// 0x6F91 0x1021 0xFFFF true true 0x0000
mu_assert_int_eq(0x6F91, bit_lib_crc16(data, data_size, 0x1021, 0xFFFF, true, true, 0x0000));
// CRC-16/RIELLO
// 0x63D0 0x1021 0xB2AA true true 0x0000
mu_assert_int_eq(0x63D0, bit_lib_crc16(data, data_size, 0x1021, 0xB2AA, true, true, 0x0000));
// CRC-16/T10-DIF
// 0xD0DB 0x8BB7 0x0000 false false 0x0000
mu_assert_int_eq(0xD0DB, bit_lib_crc16(data, data_size, 0x8BB7, 0x0000, false, false, 0x0000));
// CRC-16/TELEDISK
// 0x0FB3 0xA097 0x0000 false false 0x0000
mu_assert_int_eq(0x0FB3, bit_lib_crc16(data, data_size, 0xA097, 0x0000, false, false, 0x0000));
// CRC-16/TMS37157
// 0x26B1 0x1021 0x89EC true true 0x0000
mu_assert_int_eq(0x26B1, bit_lib_crc16(data, data_size, 0x1021, 0x89EC, true, true, 0x0000));
// CRC-16/USB
// 0xB4C8 0x8005 0xFFFF true true 0xFFFF
mu_assert_int_eq(0xB4C8, bit_lib_crc16(data, data_size, 0x8005, 0xFFFF, true, true, 0xFFFF));
// CRC-A
// 0xBF05 0x1021 0xC6C6 true true 0x0000
mu_assert_int_eq(0xBF05, bit_lib_crc16(data, data_size, 0x1021, 0xC6C6, true, true, 0x0000));
// CRC-16/KERMIT
// 0x2189 0x1021 0x0000 true true 0x0000
mu_assert_int_eq(0x2189, bit_lib_crc16(data, data_size, 0x1021, 0x0000, true, true, 0x0000));
// CRC-16/MODBUS
// 0x4B37 0x8005 0xFFFF true true 0x0000
mu_assert_int_eq(0x4B37, bit_lib_crc16(data, data_size, 0x8005, 0xFFFF, true, true, 0x0000));
// CRC-16/X-25
// 0x906E 0x1021 0xFFFF true true 0xFFFF
mu_assert_int_eq(0x906E, bit_lib_crc16(data, data_size, 0x1021, 0xFFFF, true, true, 0xFFFF));
// CRC-16/XMODEM
// 0x31C3 0x1021 0x0000 false false 0x0000
mu_assert_int_eq(0x31C3, bit_lib_crc16(data, data_size, 0x1021, 0x0000, false, false, 0x0000));
}
MU_TEST_SUITE(test_bit_lib) {
MU_RUN_TEST(test_bit_lib_increment_index);
MU_RUN_TEST(test_bit_lib_is_set);
MU_RUN_TEST(test_bit_lib_push);
MU_RUN_TEST(test_bit_lib_set_bit);
MU_RUN_TEST(test_bit_lib_set_bits);
MU_RUN_TEST(test_bit_lib_get_bit);
MU_RUN_TEST(test_bit_lib_get_bits);
MU_RUN_TEST(test_bit_lib_get_bits_16);
MU_RUN_TEST(test_bit_lib_get_bits_32);
MU_RUN_TEST(test_bit_lib_test_parity_u32);
MU_RUN_TEST(test_bit_lib_test_parity);
MU_RUN_TEST(test_bit_lib_remove_bit_every_nth);
MU_RUN_TEST(test_bit_lib_copy_bits);
MU_RUN_TEST(test_bit_lib_reverse_bits);
MU_RUN_TEST(test_bit_lib_get_bit_count);
MU_RUN_TEST(test_bit_lib_reverse_16_fast);
MU_RUN_TEST(test_bit_lib_crc16);
}
int run_minunit_test_bit_lib() {
MU_RUN_SUITE(test_bit_lib);
return MU_EXIT_CODE;
}