unleashed-firmware/lib/one_wire/ibutton/protocols/protocol_cyfral.c
Georgii Surkov 8582670a34
[FL-2811] Fix PVS-Studio warnings (#2142)
Co-authored-by: あく <alleteam@gmail.com>
Co-authored-by: gornekich <n.gorbadey@gmail.com>
2022-12-26 21:13:30 +09:00

344 lines
9.8 KiB
C

#include <furi.h>
#include <furi_hal.h>
#include "protocol_cyfral.h"
#define CYFRAL_DATA_SIZE sizeof(uint16_t)
#define CYFRAL_PERIOD (125 * furi_hal_cortex_instructions_per_microsecond())
#define CYFRAL_0_LOW (CYFRAL_PERIOD * 0.66f)
#define CYFRAL_0_HI (CYFRAL_PERIOD * 0.33f)
#define CYFRAL_1_LOW (CYFRAL_PERIOD * 0.33f)
#define CYFRAL_1_HI (CYFRAL_PERIOD * 0.66f)
#define CYFRAL_MAX_PERIOD_US 230
typedef enum {
CYFRAL_BIT_WAIT_FRONT_HIGH,
CYFRAL_BIT_WAIT_FRONT_LOW,
} CyfralBitState;
typedef enum {
CYFRAL_WAIT_START_NIBBLE,
CYFRAL_READ_NIBBLE,
CYFRAL_READ_STOP_NIBBLE,
} CyfralState;
typedef struct {
CyfralState state;
CyfralBitState bit_state;
// high + low period time
uint32_t period_time;
// temporary nibble storage
uint8_t nibble;
// data valid flag
// MUST be checked only in READ_STOP_NIBBLE state
bool data_valid;
// nibble index, we expect 8 nibbles
uint8_t index;
// bit index in nibble, 4 bit per nibble
uint8_t bit_index;
// max period, 230us x clock per us
uint32_t max_period;
} ProtocolCyfralDecoder;
typedef struct {
uint32_t data;
uint32_t index;
} ProtocolCyfralEncoder;
typedef struct {
uint16_t data;
ProtocolCyfralDecoder decoder;
ProtocolCyfralEncoder encoder;
} ProtocolCyfral;
static void* protocol_cyfral_alloc(void) {
ProtocolCyfral* proto = malloc(sizeof(ProtocolCyfral));
return (void*)proto;
}
static void protocol_cyfral_free(ProtocolCyfral* proto) {
free(proto);
}
static uint8_t* protocol_cyfral_get_data(ProtocolCyfral* proto) {
return (uint8_t*)&proto->data;
}
static void protocol_cyfral_decoder_start(ProtocolCyfral* proto) {
ProtocolCyfralDecoder* cyfral = &proto->decoder;
cyfral->state = CYFRAL_WAIT_START_NIBBLE;
cyfral->bit_state = CYFRAL_BIT_WAIT_FRONT_LOW;
cyfral->period_time = 0;
cyfral->bit_index = 0;
cyfral->index = 0;
cyfral->nibble = 0;
cyfral->data_valid = true;
cyfral->max_period = CYFRAL_MAX_PERIOD_US * furi_hal_cortex_instructions_per_microsecond();
proto->data = 0;
}
static bool protocol_cyfral_decoder_process_bit(
ProtocolCyfralDecoder* cyfral,
bool polarity,
uint32_t length,
bool* bit_ready,
bool* bit_value) {
bool result = true;
*bit_ready = false;
// bit start from low
switch(cyfral->bit_state) {
case CYFRAL_BIT_WAIT_FRONT_LOW:
if(polarity == true) {
cyfral->period_time += length;
*bit_ready = true;
if(cyfral->period_time <= cyfral->max_period) {
if((cyfral->period_time / 2) > length) {
*bit_value = false;
} else {
*bit_value = true;
}
} else {
result = false;
}
cyfral->bit_state = CYFRAL_BIT_WAIT_FRONT_HIGH;
} else {
result = false;
}
break;
case CYFRAL_BIT_WAIT_FRONT_HIGH:
if(polarity == false) {
cyfral->period_time = length;
cyfral->bit_state = CYFRAL_BIT_WAIT_FRONT_LOW;
} else {
result = false;
}
break;
}
return result;
}
static bool protocol_cyfral_decoder_feed(ProtocolCyfral* proto, bool level, uint32_t duration) {
ProtocolCyfralDecoder* cyfral = &proto->decoder;
bool bit_ready;
bool bit_value;
bool decoded = false;
switch(cyfral->state) {
case CYFRAL_WAIT_START_NIBBLE:
// wait for start word
if(protocol_cyfral_decoder_process_bit(cyfral, level, duration, &bit_ready, &bit_value)) {
if(bit_ready) {
cyfral->nibble = ((cyfral->nibble << 1) | bit_value) & 0x0F;
if(cyfral->nibble == 0b0001) {
cyfral->nibble = 0;
cyfral->state = CYFRAL_READ_NIBBLE;
}
}
} else {
protocol_cyfral_decoder_start(proto);
}
break;
case CYFRAL_READ_NIBBLE:
// read nibbles
if(protocol_cyfral_decoder_process_bit(cyfral, level, duration, &bit_ready, &bit_value)) {
if(bit_ready) {
cyfral->nibble = (cyfral->nibble << 1) | bit_value;
cyfral->bit_index++;
//convert every nibble to 2-bit index
if(cyfral->bit_index == 4) {
switch(cyfral->nibble) {
case 0b1110:
proto->data = (proto->data << 2) | 0b11;
break;
case 0b1101:
proto->data = (proto->data << 2) | 0b10;
break;
case 0b1011:
proto->data = (proto->data << 2) | 0b01;
break;
case 0b0111:
proto->data = (proto->data << 2) | 0b00;
break;
default:
cyfral->data_valid = false;
break;
}
cyfral->nibble = 0;
cyfral->bit_index = 0;
cyfral->index++;
}
// succefully read 8 nibbles
if(cyfral->index == 8) {
cyfral->state = CYFRAL_READ_STOP_NIBBLE;
}
}
} else {
protocol_cyfral_decoder_start(proto);
}
break;
case CYFRAL_READ_STOP_NIBBLE:
// read stop nibble
if(protocol_cyfral_decoder_process_bit(cyfral, level, duration, &bit_ready, &bit_value)) {
if(bit_ready) {
cyfral->nibble = ((cyfral->nibble << 1) | bit_value) & 0x0F;
cyfral->bit_index++;
switch(cyfral->bit_index) {
case 0:
case 1:
case 2:
case 3:
break;
case 4:
if(cyfral->nibble == 0b0001) {
// validate data
if(cyfral->data_valid) {
decoded = true;
} else {
protocol_cyfral_decoder_start(proto);
}
} else {
protocol_cyfral_decoder_start(proto);
}
break;
default:
protocol_cyfral_decoder_start(proto);
break;
}
}
} else {
protocol_cyfral_decoder_start(proto);
}
break;
}
return decoded;
}
static uint32_t protocol_cyfral_encoder_encode(const uint16_t data) {
uint32_t value = 0;
for(int8_t i = 0; i <= 7; i++) {
switch((data >> (i * 2)) & 0b00000011) {
case 0b11:
value = value << 4;
value += 0b00000111;
break;
case 0b10:
value = value << 4;
value += 0b00001011;
break;
case 0b01:
value = value << 4;
value += 0b00001101;
break;
case 0b00:
value = value << 4;
value += 0b00001110;
break;
default:
break;
}
}
return value;
}
static bool protocol_cyfral_encoder_start(ProtocolCyfral* proto) {
proto->encoder.index = 0;
proto->encoder.data = protocol_cyfral_encoder_encode(proto->data);
return true;
}
static LevelDuration protocol_cyfral_encoder_yield(ProtocolCyfral* proto) {
LevelDuration result;
if(proto->encoder.index < 8) {
// start word (0b0001)
switch(proto->encoder.index) {
case 0:
result = level_duration_make(false, CYFRAL_0_LOW); //-V1037
break;
case 1:
result = level_duration_make(true, CYFRAL_0_HI); //-V1037
break;
case 2:
result = level_duration_make(false, CYFRAL_0_LOW);
break;
case 3:
result = level_duration_make(true, CYFRAL_0_HI);
break;
case 4:
result = level_duration_make(false, CYFRAL_0_LOW);
break;
case 5:
result = level_duration_make(true, CYFRAL_0_HI);
break;
case 6:
result = level_duration_make(false, CYFRAL_1_LOW);
break;
case 7:
result = level_duration_make(true, CYFRAL_1_HI);
break;
}
} else {
// data
uint8_t data_start_index = proto->encoder.index - 8;
bool clock_polarity = (data_start_index) % 2;
uint8_t bit_index = (data_start_index) / 2;
bool bit_value = ((proto->encoder.data >> bit_index) & 1);
if(!clock_polarity) {
if(bit_value) {
result = level_duration_make(false, CYFRAL_1_LOW);
} else {
result = level_duration_make(false, CYFRAL_0_LOW);
}
} else {
if(bit_value) {
result = level_duration_make(true, CYFRAL_1_HI);
} else {
result = level_duration_make(true, CYFRAL_0_HI);
}
}
}
proto->encoder.index++;
if(proto->encoder.index >= (9 * 4 * 2)) {
proto->encoder.index = 0;
}
return result;
}
const ProtocolBase protocol_cyfral = {
.name = "Cyfral",
.manufacturer = "Cyfral",
.data_size = CYFRAL_DATA_SIZE,
.alloc = (ProtocolAlloc)protocol_cyfral_alloc,
.free = (ProtocolFree)protocol_cyfral_free,
.get_data = (ProtocolGetData)protocol_cyfral_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_cyfral_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_cyfral_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_cyfral_encoder_start,
.yield = (ProtocolEncoderYield)protocol_cyfral_encoder_yield,
},
};