unleashed-firmware/lib/infrared/encoder_decoder/common/infrared_common_decoder.c
Georgii Surkov 8582670a34
[FL-2811] Fix PVS-Studio warnings (#2142)
Co-authored-by: あく <alleteam@gmail.com>
Co-authored-by: gornekich <n.gorbadey@gmail.com>
2022-12-26 21:13:30 +09:00

319 lines
11 KiB
C

#include <core/check.h>
#include <core/common_defines.h>
#include "infrared.h"
#include "infrared_common_i.h"
#include <stdbool.h>
#include <furi.h>
#include "infrared_i.h"
#include <stdint.h>
static void infrared_common_decoder_reset_state(InfraredCommonDecoder* decoder);
static inline size_t consume_samples(uint32_t* array, size_t len, size_t shift) {
furi_assert(len >= shift);
len -= shift;
for(size_t i = 0; i < len; ++i) {
array[i] = array[i + shift];
}
return len;
}
static inline void accumulate_lsb(InfraredCommonDecoder* decoder, bool bit) {
uint16_t index = decoder->databit_cnt / 8;
uint8_t shift = decoder->databit_cnt % 8; // LSB first
if(!shift) decoder->data[index] = 0;
if(bit) {
decoder->data[index] |= (0x1 << shift); // add 1
} else {
(void)decoder->data[index]; // add 0
}
++decoder->databit_cnt;
}
static bool infrared_check_preamble(InfraredCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
bool start_level = (decoder->level + decoder->timings_cnt + 1) % 2;
if(decoder->timings_cnt == 0) return false;
// align to start at Mark timing
if(!start_level) {
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1);
}
if(decoder->protocol->timings.preamble_mark == 0) {
return true;
}
while((!result) && (decoder->timings_cnt >= 2)) {
float preamble_tolerance = decoder->protocol->timings.preamble_tolerance;
uint16_t preamble_mark = decoder->protocol->timings.preamble_mark;
uint16_t preamble_space = decoder->protocol->timings.preamble_space;
if((MATCH_TIMING(decoder->timings[0], preamble_mark, preamble_tolerance)) &&
(MATCH_TIMING(decoder->timings[1], preamble_space, preamble_tolerance))) {
result = true;
}
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 2);
}
return result;
}
/**
* decoder->protocol->databit_len[0] contains biggest amount of bits, for this protocol.
* decoder->protocol->databit_len[1...] contains lesser values, but which can be decoded
* for some protocol modifications.
*/
static InfraredStatus infrared_common_decode_bits(InfraredCommonDecoder* decoder) {
furi_assert(decoder);
InfraredStatus status = InfraredStatusOk;
const InfraredTimings* timings = &decoder->protocol->timings;
while(decoder->timings_cnt && (status == InfraredStatusOk)) {
bool level = (decoder->level + decoder->timings_cnt + 1) % 2;
uint32_t timing = decoder->timings[0];
if(timings->min_split_time && !level) {
if(timing > timings->min_split_time) {
/* long low timing - check if we're ready for any of protocol modification */
for(size_t i = 0; i < COUNT_OF(decoder->protocol->databit_len) &&
decoder->protocol->databit_len[i];
++i) {
if(decoder->protocol->databit_len[i] == decoder->databit_cnt) {
return InfraredStatusReady;
}
}
} else if(decoder->protocol->databit_len[0] == decoder->databit_cnt) {
/* short low timing for longest protocol - this is signal is longer than we expected */
return InfraredStatusError;
}
}
status = decoder->protocol->decode(decoder, level, timing);
furi_check(decoder->databit_cnt <= decoder->protocol->databit_len[0]);
furi_assert(status == InfraredStatusError || status == InfraredStatusOk);
if(status == InfraredStatusError) {
break;
}
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1);
/* check if largest protocol version can be decoded */
if(level && (decoder->protocol->databit_len[0] == decoder->databit_cnt) && //-V1051
!timings->min_split_time) {
status = InfraredStatusReady;
break;
}
}
return status;
}
/* Pulse Distance-Width Modulation */
InfraredStatus
infrared_common_decode_pdwm(InfraredCommonDecoder* decoder, bool level, uint32_t timing) {
furi_assert(decoder);
InfraredStatus status = InfraredStatusOk;
uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance;
uint16_t bit1_mark = decoder->protocol->timings.bit1_mark;
uint16_t bit1_space = decoder->protocol->timings.bit1_space;
uint16_t bit0_mark = decoder->protocol->timings.bit0_mark;
uint16_t bit0_space = decoder->protocol->timings.bit0_space;
bool analyze_timing = level ^ (bit1_mark == bit0_mark);
uint16_t bit1 = level ? bit1_mark : bit1_space;
uint16_t bit0 = level ? bit0_mark : bit0_space;
uint16_t no_info_timing = (bit1_mark == bit0_mark) ? bit1_mark : bit1_space;
if(analyze_timing) {
if(MATCH_TIMING(timing, bit1, bit_tolerance)) {
accumulate_lsb(decoder, 1);
} else if(MATCH_TIMING(timing, bit0, bit_tolerance)) {
accumulate_lsb(decoder, 0);
} else {
status = InfraredStatusError;
}
} else {
if(!MATCH_TIMING(timing, no_info_timing, bit_tolerance)) {
status = InfraredStatusError;
}
}
return status;
}
/* level switch detection goes in middle of time-quant */
InfraredStatus
infrared_common_decode_manchester(InfraredCommonDecoder* decoder, bool level, uint32_t timing) {
furi_assert(decoder);
uint32_t bit = decoder->protocol->timings.bit1_mark;
uint32_t tolerance = decoder->protocol->timings.bit_tolerance;
bool* switch_detect = &decoder->switch_detect;
furi_assert((*switch_detect == true) || (*switch_detect == false));
bool single_timing = MATCH_TIMING(timing, bit, tolerance);
bool double_timing = MATCH_TIMING(timing, 2 * bit, tolerance);
if(!single_timing && !double_timing) {
return InfraredStatusError;
}
if(decoder->protocol->manchester_start_from_space && (decoder->databit_cnt == 0)) {
*switch_detect = 1; /* fake as we were previously in the middle of time-quant */
accumulate_lsb(decoder, 0);
}
if(*switch_detect == 0) {
if(double_timing) {
return InfraredStatusError;
}
/* only single timing - level switch required in the middle of time-quant */
*switch_detect = 1;
} else {
/* double timing means we're in the middle of time-quant again */
if(single_timing) *switch_detect = 0;
}
if(*switch_detect) {
if(decoder->protocol->databit_len[0] == decoder->databit_cnt) {
return InfraredStatusError;
}
accumulate_lsb(decoder, level);
}
return InfraredStatusOk;
}
InfraredMessage* infrared_common_decoder_check_ready(InfraredCommonDecoder* decoder) {
InfraredMessage* message = NULL;
bool found_length = false;
for(size_t i = 0;
i < COUNT_OF(decoder->protocol->databit_len) && decoder->protocol->databit_len[i];
++i) {
if(decoder->protocol->databit_len[i] == decoder->databit_cnt) {
found_length = true;
break;
}
}
if(found_length && decoder->protocol->interpret(decoder)) {
decoder->databit_cnt = 0;
message = &decoder->message;
if(decoder->protocol->decode_repeat) {
decoder->state = InfraredCommonDecoderStateProcessRepeat;
} else {
decoder->state = InfraredCommonDecoderStateWaitPreamble;
}
}
return message;
}
InfraredMessage*
infrared_common_decode(InfraredCommonDecoder* decoder, bool level, uint32_t duration) {
furi_assert(decoder);
InfraredMessage* message = 0;
InfraredStatus status = InfraredStatusError;
if(decoder->level == level) {
infrared_common_decoder_reset(decoder);
}
decoder->level = level; // start with low level (Space timing)
decoder->timings[decoder->timings_cnt] = duration;
decoder->timings_cnt++;
furi_check(decoder->timings_cnt <= sizeof(decoder->timings));
while(1) {
switch(decoder->state) {
case InfraredCommonDecoderStateWaitPreamble:
if(infrared_check_preamble(decoder)) {
decoder->state = InfraredCommonDecoderStateDecode;
decoder->databit_cnt = 0;
decoder->switch_detect = false;
continue;
}
break;
case InfraredCommonDecoderStateDecode:
status = infrared_common_decode_bits(decoder);
if(status == InfraredStatusReady) {
message = infrared_common_decoder_check_ready(decoder);
if(message) {
continue;
} else if(decoder->protocol->databit_len[0] == decoder->databit_cnt) {
/* error: can't decode largest protocol - begin decoding from start */
decoder->state = InfraredCommonDecoderStateWaitPreamble;
}
} else if(status == InfraredStatusError) {
infrared_common_decoder_reset_state(decoder);
continue;
}
break;
case InfraredCommonDecoderStateProcessRepeat:
status = decoder->protocol->decode_repeat(decoder);
if(status == InfraredStatusError) {
infrared_common_decoder_reset_state(decoder);
continue;
} else if(status == InfraredStatusReady) {
decoder->message.repeat = true;
message = &decoder->message;
}
break;
}
break;
}
return message;
}
void* infrared_common_decoder_alloc(const InfraredCommonProtocolSpec* protocol) {
furi_assert(protocol);
/* protocol->databit_len[0] has to contain biggest value of bits that can be decoded */
for(size_t i = 1; i < COUNT_OF(protocol->databit_len); ++i) {
furi_assert(protocol->databit_len[i] <= protocol->databit_len[0]);
}
uint32_t alloc_size = sizeof(InfraredCommonDecoder) + protocol->databit_len[0] / 8 +
!!(protocol->databit_len[0] % 8);
InfraredCommonDecoder* decoder = malloc(alloc_size);
decoder->protocol = protocol;
decoder->level = true;
return decoder;
}
void infrared_common_decoder_free(InfraredCommonDecoder* decoder) {
furi_assert(decoder);
free(decoder);
}
void infrared_common_decoder_reset_state(InfraredCommonDecoder* decoder) {
decoder->state = InfraredCommonDecoderStateWaitPreamble;
decoder->databit_cnt = 0;
decoder->switch_detect = false;
decoder->message.protocol = InfraredProtocolUnknown;
if(decoder->protocol->timings.preamble_mark == 0) {
if(decoder->timings_cnt > 0) {
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1);
}
}
}
void infrared_common_decoder_reset(InfraredCommonDecoder* decoder) {
furi_assert(decoder);
infrared_common_decoder_reset_state(decoder);
decoder->timings_cnt = 0;
}