unleashed-firmware/applications/lf-rfid/lf-rfid.c
coreglitch ccd40497eb
FL-176 LF RFID RX (#248)
* pulldown ibutton pin during rfid read
* enable and handle COMP interrupts
* send events from comparator IRQ and handle in app
* manchester encode
* successfully read em4100
* read-emulate
* led
2020-11-19 14:11:03 +03:00

341 lines
9.8 KiB
C

#include "flipper_v2.h"
typedef enum { EventTypeTick, EventTypeKey, EventTypeRx } EventType;
typedef struct {
bool value;
uint32_t dwt_value;
} RxEvent;
typedef struct {
union {
InputEvent input;
RxEvent rx;
} value;
EventType type;
} AppEvent;
typedef struct {
uint32_t freq_khz;
bool on;
uint8_t customer_id;
uint32_t em_data;
} State;
static void render_callback(CanvasApi* canvas, void* ctx) {
State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
canvas->clear(canvas);
canvas->set_color(canvas, ColorBlack);
canvas->set_font(canvas, FontPrimary);
canvas->draw_str(canvas, 2, 12, "LF RFID");
canvas->draw_str(canvas, 2, 24, state->on ? "Reading" : "Emulating");
char buf[14];
sprintf(buf, "%d kHz", (int)state->freq_khz);
canvas->draw_str(canvas, 2, 36, buf);
sprintf(buf, "%02d:%010ld", state->customer_id, state->em_data);
canvas->draw_str(canvas, 2, 45, buf);
release_mutex((ValueMutex*)ctx, state);
}
static void input_callback(InputEvent* input_event, void* ctx) {
osMessageQueueId_t event_queue = (QueueHandle_t)ctx;
AppEvent event;
event.type = EventTypeKey;
event.value.input = *input_event;
osMessageQueuePut(event_queue, &event, 0, 0);
}
extern TIM_HandleTypeDef TIM_C;
void em4100_emulation(uint8_t* data, GpioPin* pin);
void prepare_data(uint32_t ID, uint32_t VENDOR, uint8_t* data);
GpioPin debug_0 = {.pin = GPIO_PIN_2, .port = GPIOB};
GpioPin debug_1 = {.pin = GPIO_PIN_3, .port = GPIOC};
extern COMP_HandleTypeDef hcomp1;
void* comp_ctx = NULL;
void HAL_COMP_TriggerCallback(COMP_HandleTypeDef* hcomp) {
if(hcomp != &hcomp1) return;
// gpio_write(&debug_0, true);
osMessageQueueId_t event_queue = (QueueHandle_t)comp_ctx;
AppEvent event;
event.type = EventTypeRx;
event.value.rx.value = (HAL_COMP_GetOutputLevel(hcomp) == COMP_OUTPUT_LEVEL_HIGH);
event.value.rx.dwt_value = DWT->CYCCNT;
osMessageQueuePut(event_queue, &event, 0, 0);
// gpio_write(&debug_0, false);
}
const uint8_t ROW_SIZE = 4;
const uint8_t LINE_SIZE = 10;
static bool even_check(uint8_t* buf) {
uint8_t col_parity_sum[ROW_SIZE];
for(uint8_t col = 0; col < ROW_SIZE; col++) {
col_parity_sum[col] = 0;
}
// line parity
for(uint8_t line = 0; line < LINE_SIZE; line++) {
printf("%d: ", line);
uint8_t parity_sum = 0;
for(uint8_t col = 0; col < ROW_SIZE; col++) {
parity_sum += buf[line * (ROW_SIZE + 1) + col];
col_parity_sum[col] += buf[line * (ROW_SIZE + 1) + col];
printf("%d ", buf[line * (ROW_SIZE + 1) + col]);
}
if((1 & parity_sum) != buf[line * (ROW_SIZE + 1) + ROW_SIZE]) {
printf(
"line parity fail at %d (%d : %d)\n",
line,
parity_sum,
buf[line * (ROW_SIZE + 1) + ROW_SIZE]);
return false;
}
printf("\n");
}
for(uint8_t col = 0; col < ROW_SIZE; col++) {
if((1 & col_parity_sum[col]) != buf[LINE_SIZE * (ROW_SIZE + 1) + col]) {
printf(
"col parity fail at %d (%d : %d)\n",
col,
col_parity_sum[col],
buf[LINE_SIZE * (ROW_SIZE + 1) + col]);
return false;
}
}
return true;
}
static void extract_data(uint8_t* buf, uint8_t* customer, uint32_t* em_data) {
uint32_t data = 0;
uint8_t offset = 0;
printf("customer: ");
for(uint8_t line = 0; line < 2; line++) {
for(uint8_t col = 0; col < ROW_SIZE; col++) {
uint32_t bit = buf[line * (ROW_SIZE + 1) + col];
data |= bit << (7 - offset);
printf("%d ", bit);
offset++;
}
}
printf("\n");
*customer = data;
data = 0;
offset = 0;
printf("data: ");
for(uint8_t line = 2; line < LINE_SIZE; line++) {
for(uint8_t col = 0; col < ROW_SIZE; col++) {
uint32_t bit = buf[line * (ROW_SIZE + 1) + col];
data |= bit << (31 - offset);
printf("%d ", bit);
offset++;
}
}
printf("\n");
*em_data = data;
}
void lf_rfid_workaround(void* p) {
osMessageQueueId_t event_queue = osMessageQueueNew(1, sizeof(AppEvent), NULL);
// create pin
GpioPin pull_pin = {.pin = RFID_PULL_Pin, .port = RFID_PULL_GPIO_Port};
// TODO open record
GpioPin* pull_pin_record = &pull_pin;
gpio_init(pull_pin_record, GpioModeOutputPushPull);
gpio_init(&debug_0, GpioModeOutputPushPull);
gpio_init(&debug_1, GpioModeOutputPushPull);
// pulldown iBtn pin to prevent interference from ibutton
gpio_init((GpioPin*)&ibutton_gpio, GpioModeOutputOpenDrain);
gpio_write((GpioPin*)&ibutton_gpio, false);
// init ctx
comp_ctx = (void*)event_queue;
// start comp
HAL_COMP_Start(&hcomp1);
uint8_t emulation_data[64];
State _state;
_state.freq_khz = 125;
_state.on = false;
_state.customer_id = 01;
_state.em_data = 4378151;
ValueMutex state_mutex;
if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
printf("cannot create mutex\n");
furiac_exit(NULL);
}
Widget* widget = widget_alloc();
widget_draw_callback_set(widget, render_callback, &state_mutex);
widget_input_callback_set(widget, input_callback, event_queue);
// Open GUI and register widget
GuiApi* gui = (GuiApi*)furi_open("gui");
if(gui == NULL) {
printf("gui is not available\n");
furiac_exit(NULL);
}
gui->add_widget(gui, widget, GuiLayerFullscreen);
AppEvent event;
uint32_t prev_dwt;
int8_t symbol = -1; // init state
bool center = false;
size_t symbol_cnt = 0;
GpioPin* led_record = (GpioPin*)&led_gpio[1];
gpio_init(led_record, GpioModeOutputOpenDrain);
uint8_t buf[64];
for(size_t i = 0; i < 64; i++) {
buf[i] = 0;
}
while(1) {
osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 100);
if(event.type == EventTypeRx && event_status == osOK) {
uint32_t dt = (event.value.rx.dwt_value - prev_dwt) / (SystemCoreClock / 1000000.0f);
prev_dwt = event.value.rx.dwt_value;
if(dt > 384) {
// change symbol 0->1 or 1->0
symbol = event.value.rx.value;
center = true;
} else {
// same symbol as prev or center
center = !center;
}
/*
gpio_write(&debug_1, true);
delay_us(center ? 10 : 30);
gpio_write(&debug_1, false);
*/
if(center && symbol != -1) {
/*
gpio_write(&debug_0, true);
delay_us(symbol ? 10 : 30);
gpio_write(&debug_0, false);
*/
buf[symbol_cnt] = symbol;
symbol_cnt++;
}
// check preamble
if(symbol_cnt <= 9 && symbol == 0) {
symbol_cnt = 0;
symbol = -1;
}
// check stop bit
if(symbol_cnt == 64 && symbol == 1) {
symbol_cnt = 0;
symbol = -1;
}
if(symbol_cnt == 64) {
if(even_check(&buf[9])) {
State* state = (State*)acquire_mutex_block(&state_mutex);
extract_data(&buf[9], &state->customer_id, &state->em_data);
printf("customer: %02d, data: %010lu\n", state->customer_id, state->em_data);
release_mutex(&state_mutex, state);
gpio_write(led_record, false);
osDelay(100);
gpio_write(led_record, true);
}
symbol_cnt = 0;
}
} else {
State* state = (State*)acquire_mutex_block(&state_mutex);
if(event_status == osOK) {
if(event.type == EventTypeKey) {
// press events
if(event.value.input.state && event.value.input.input == InputBack) {
hal_pwmn_stop(&TIM_C, TIM_CHANNEL_1); // TODO: move to furiac_onexit
gpio_init(pull_pin_record, GpioModeInput);
gpio_init((GpioPin*)&ibutton_gpio, GpioModeInput);
// TODO remove all widgets create by app
widget_enabled_set(widget, false);
furiac_exit(NULL);
}
if(event.value.input.state && event.value.input.input == InputUp) {
state->freq_khz += 10;
}
if(event.value.input.state && event.value.input.input == InputDown) {
state->freq_khz -= 10;
}
if(event.value.input.state && event.value.input.input == InputLeft) {
}
if(event.value.input.state && event.value.input.input == InputRight) {
}
if(event.value.input.state && event.value.input.input == InputOk) {
state->on = !state->on;
if(!state->on) {
prepare_data(state->em_data, state->customer_id, emulation_data);
}
}
}
} else {
// event timeout
}
hal_pwmn_set(
state->on ? 0.5 : 0.0, (float)(state->freq_khz * 1000), &LFRFID_TIM, LFRFID_CH);
if(!state->on) {
em4100_emulation(emulation_data, pull_pin_record);
} else {
gpio_write(pull_pin_record, false);
}
// common code, for example, force update UI
widget_update(widget);
release_mutex(&state_mutex, state);
}
}
}