unleashed-firmware/lib/subghz/subghz_keystore.c
Skorpionm 3164184bbc
[FL-2230] SubGhz: protocol API refactoring (#969)
* SubGhz: protocols library refactoring
* SubGhz: new architecture and refactoring
* SubGhz: simplify protocol structure, remove unused types
* SubGhz: rename Subghz to SubGhz
* SubGhz: add environment concept

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
Co-authored-by: DrZlo13 <who.just.the.doctor@gmail.com>
2022-03-03 12:48:56 +03:00

603 lines
22 KiB
C

#include "subghz_keystore.h"
#include <furi.h>
#include <furi_hal.h>
#include <storage/storage.h>
#include <toolbox/hex.h>
#include <toolbox/stream/stream.h>
#include <flipper_format/flipper_format.h>
#include <flipper_format/flipper_format_i.h>
#define TAG "SubGhzKeystore"
#define FILE_BUFFER_SIZE 64
#define SUBGHZ_KEYSTORE_FILE_TYPE "Flipper SubGhz Keystore File"
#define SUBGHZ_KEYSTORE_FILE_RAW_TYPE "Flipper SubGhz Keystore RAW File"
#define SUBGHZ_KEYSTORE_FILE_VERSION 0
#define SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT 1
#define SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE 512
#define SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE (SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE * 2)
typedef enum {
SubGhzKeystoreEncryptionNone,
SubGhzKeystoreEncryptionAES256,
} SubGhzKeystoreEncryption;
struct SubGhzKeystore {
SubGhzKeyArray_t data;
};
SubGhzKeystore* subghz_keystore_alloc() {
SubGhzKeystore* instance = malloc(sizeof(SubGhzKeystore));
SubGhzKeyArray_init(instance->data);
return instance;
}
void subghz_keystore_free(SubGhzKeystore* instance) {
furi_assert(instance);
for
M_EACH(manufacture_code, instance->data, SubGhzKeyArray_t) {
string_clear(manufacture_code->name);
manufacture_code->key = 0;
}
SubGhzKeyArray_clear(instance->data);
free(instance);
}
static void subghz_keystore_add_key(
SubGhzKeystore* instance,
const char* name,
uint64_t key,
uint16_t type) {
SubGhzKey* manufacture_code = SubGhzKeyArray_push_raw(instance->data);
string_init_set_str(manufacture_code->name, name);
manufacture_code->key = key;
manufacture_code->type = type;
}
static bool subghz_keystore_process_line(SubGhzKeystore* instance, char* line) {
uint64_t key = 0;
uint16_t type = 0;
char skey[17] = {0};
char name[65] = {0};
int ret = sscanf(line, "%16s:%hu:%64s", skey, &type, name);
key = strtoull(skey, NULL, 16);
if(ret == 3) {
subghz_keystore_add_key(instance, name, key, type);
return true;
} else {
FURI_LOG_E(TAG, "Failed to load line: %s\r\n", line);
return false;
}
}
static void subghz_keystore_mess_with_iv(uint8_t* iv) {
// Alignment check for `ldrd` instruction
furi_assert(((uint32_t)iv) % 4 == 0);
// Please do not share decrypted manufacture keys
// Sharing them will bring some discomfort to legal owners
// And potential legal action against you
// While you reading this code think about your own personal responsibility
asm volatile("nani: \n"
"ldrd r0, r2, [%0, #0x0] \n"
"lsl r1, r0, #8 \n"
"lsl r3, r2, #8 \n"
"orr r3, r3, r0, lsr #24\n"
"uadd8 r1, r1, r0 \n"
"uadd8 r3, r3, r2 \n"
"strd r1, r3, [%0, #0x0] \n"
"ldrd r1, r3, [%0, #0x8] \n"
"lsl r0, r1, #8 \n"
"orr r0, r0, r2, lsr #24\n"
"lsl r2, r3, #8 \n"
"orr r2, r2, r1, lsr #24\n"
"uadd8 r1, r1, r0 \n"
"uadd8 r3, r3, r2 \n"
"strd r1, r3, [%0, #0x8] \n"
:
: "r"(iv)
: "r0", "r1", "r2", "r3", "memory");
}
static bool subghz_keystore_read_file(SubGhzKeystore* instance, Stream* stream, uint8_t* iv) {
bool result = true;
uint8_t buffer[FILE_BUFFER_SIZE];
char* decrypted_line = malloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
char* encrypted_line = malloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
size_t encrypted_line_cursor = 0;
if(iv) furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv);
size_t ret = 0;
do {
ret = stream_read(stream, buffer, FILE_BUFFER_SIZE);
for(uint16_t i = 0; i < ret; i++) {
if(buffer[i] == '\n' && encrypted_line_cursor > 0) {
// Process line
if(iv) {
// Data alignment check, 32 instead of 16 because of hex encoding
size_t len = strlen(encrypted_line);
if(len % 32 == 0) {
// Inplace hex to bin conversion
for(size_t i = 0; i < len; i += 2) {
uint8_t hi_nibble = 0;
uint8_t lo_nibble = 0;
hex_char_to_hex_nibble(encrypted_line[i], &hi_nibble);
hex_char_to_hex_nibble(encrypted_line[i + 1], &lo_nibble);
encrypted_line[i / 2] = (hi_nibble << 4) | lo_nibble;
}
len /= 2;
if(furi_hal_crypto_decrypt(
(uint8_t*)encrypted_line, (uint8_t*)decrypted_line, len)) {
subghz_keystore_process_line(instance, decrypted_line);
} else {
FURI_LOG_E(TAG, "Decryption failed");
result = false;
break;
}
} else {
FURI_LOG_E(TAG, "Invalid encrypted data: %s", encrypted_line);
}
} else {
subghz_keystore_process_line(instance, encrypted_line);
}
// reset line buffer
memset(decrypted_line, 0, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
memset(encrypted_line, 0, SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
encrypted_line_cursor = 0;
} else if(buffer[i] == '\r' || buffer[i] == '\n') {
// do not add line endings to the buffer
} else {
if(encrypted_line_cursor < SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE) {
encrypted_line[encrypted_line_cursor] = buffer[i];
encrypted_line_cursor++;
} else {
FURI_LOG_E(TAG, "Malformed file");
result = false;
break;
}
}
}
} while(ret > 0 && result);
if(iv) furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT);
free(encrypted_line);
free(decrypted_line);
return result;
}
bool subghz_keystore_load(SubGhzKeystore* instance, const char* file_name) {
furi_assert(instance);
bool result = false;
uint8_t iv[16];
uint32_t version;
SubGhzKeystoreEncryption encryption;
string_t filetype;
string_init(filetype);
Storage* storage = furi_record_open("storage");
FlipperFormat* flipper_format = flipper_format_file_alloc(storage);
do {
if(!flipper_format_file_open_existing(flipper_format, file_name)) {
FURI_LOG_E(TAG, "Unable to open file for read: %s", file_name);
break;
}
if(!flipper_format_read_header(flipper_format, filetype, &version)) {
FURI_LOG_E(TAG, "Missing or incorrect header");
break;
}
if(!flipper_format_read_uint32(flipper_format, "Encryption", (uint32_t*)&encryption, 1)) {
FURI_LOG_E(TAG, "Missing encryption type");
break;
}
if(strcmp(string_get_cstr(filetype), SUBGHZ_KEYSTORE_FILE_TYPE) != 0 ||
version != SUBGHZ_KEYSTORE_FILE_VERSION) {
FURI_LOG_E(TAG, "Type or version mismatch");
break;
}
Stream* stream = flipper_format_get_raw_stream(flipper_format);
if(encryption == SubGhzKeystoreEncryptionNone) {
result = subghz_keystore_read_file(instance, stream, NULL);
} else if(encryption == SubGhzKeystoreEncryptionAES256) {
if(!flipper_format_read_hex(flipper_format, "IV", iv, 16)) {
FURI_LOG_E(TAG, "Missing IV");
break;
}
subghz_keystore_mess_with_iv(iv);
result = subghz_keystore_read_file(instance, stream, iv);
} else {
FURI_LOG_E(TAG, "Unknown encryption");
break;
}
FURI_LOG_I(TAG, "Loading keystore %s", file_name);
} while(0);
flipper_format_free(flipper_format);
furi_record_close("storage");
string_clear(filetype);
return result;
}
bool subghz_keystore_save(SubGhzKeystore* instance, const char* file_name, uint8_t* iv) {
furi_assert(instance);
bool result = false;
Storage* storage = furi_record_open("storage");
char* decrypted_line = malloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
char* encrypted_line = malloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
FlipperFormat* flipper_format = flipper_format_file_alloc(storage);
do {
if(!flipper_format_file_open_always(flipper_format, file_name)) {
FURI_LOG_E(TAG, "Unable to open file for write: %s", file_name);
break;
}
if(!flipper_format_write_header_cstr(
flipper_format, SUBGHZ_KEYSTORE_FILE_TYPE, SUBGHZ_KEYSTORE_FILE_VERSION)) {
FURI_LOG_E(TAG, "Unable to add header");
break;
}
uint32_t encryption = SubGhzKeystoreEncryptionAES256;
if(!flipper_format_write_uint32(flipper_format, "Encryption", &encryption, 1)) {
FURI_LOG_E(TAG, "Unable to add Encryption");
break;
}
if(!flipper_format_write_hex(flipper_format, "IV", iv, 16)) {
FURI_LOG_E(TAG, "Unable to add IV");
break;
}
subghz_keystore_mess_with_iv(iv);
if(!furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv)) {
FURI_LOG_E(TAG, "Unable to load encryption key");
break;
}
Stream* stream = flipper_format_get_raw_stream(flipper_format);
size_t encrypted_line_count = 0;
for
M_EACH(key, instance->data, SubGhzKeyArray_t) {
// Wipe buffer before packing
memset(decrypted_line, 0, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
memset(encrypted_line, 0, SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
// Form unecreypted line
int len = snprintf(
decrypted_line,
SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE,
"%08lX%08lX:%hu:%s",
(uint32_t)(key->key >> 32),
(uint32_t)key->key,
key->type,
string_get_cstr(key->name));
// Verify length and align
furi_assert(len > 0);
if(len % 16 != 0) {
len += (16 - len % 16);
}
furi_assert(len % 16 == 0);
furi_assert(len <= SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
// Form encrypted line
if(!furi_hal_crypto_encrypt(
(uint8_t*)decrypted_line, (uint8_t*)encrypted_line, len)) {
FURI_LOG_E(TAG, "Encryption failed");
break;
}
// HEX Encode encrypted line
const char xx[] = "0123456789ABCDEF";
for(size_t i = 0; i < len; i++) {
size_t cursor = len - i - 1;
size_t hex_cursor = len * 2 - i * 2 - 1;
encrypted_line[hex_cursor] = xx[encrypted_line[cursor] & 0xF];
encrypted_line[hex_cursor - 1] = xx[(encrypted_line[cursor] >> 4) & 0xF];
}
stream_write_cstring(stream, encrypted_line);
stream_write_char(stream, '\n');
encrypted_line_count++;
}
furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT);
size_t total_keys = SubGhzKeyArray_size(instance->data);
result = encrypted_line_count == total_keys;
if(result) {
FURI_LOG_I(TAG, "Success. Encrypted: %d of %d", encrypted_line_count, total_keys);
} else {
FURI_LOG_E(TAG, "Failure. Encrypted: %d of %d", encrypted_line_count, total_keys);
}
} while(0);
flipper_format_free(flipper_format);
free(encrypted_line);
free(decrypted_line);
furi_record_close("storage");
return result;
}
SubGhzKeyArray_t* subghz_keystore_get_data(SubGhzKeystore* instance) {
furi_assert(instance);
return &instance->data;
}
bool subghz_keystore_raw_encrypted_save(
const char* input_file_name,
const char* output_file_name,
uint8_t* iv) {
bool encrypted = false;
uint32_t version;
string_t filetype;
string_init(filetype);
SubGhzKeystoreEncryption encryption;
Storage* storage = furi_record_open("storage");
char* encrypted_line = malloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
FlipperFormat* input_flipper_format = flipper_format_file_alloc(storage);
do {
if(!flipper_format_file_open_existing(input_flipper_format, input_file_name)) {
FURI_LOG_E(TAG, "Unable to open file for read: %s", input_file_name);
break;
}
if(!flipper_format_read_header(input_flipper_format, filetype, &version)) {
FURI_LOG_E(TAG, "Missing or incorrect header");
break;
}
if(!flipper_format_read_uint32(
input_flipper_format, "Encryption", (uint32_t*)&encryption, 1)) {
FURI_LOG_E(TAG, "Missing encryption type");
break;
}
if(strcmp(string_get_cstr(filetype), SUBGHZ_KEYSTORE_FILE_RAW_TYPE) != 0 ||
version != SUBGHZ_KEYSTORE_FILE_VERSION) {
FURI_LOG_E(TAG, "Type or version mismatch");
break;
}
if(encryption != SubGhzKeystoreEncryptionNone) {
FURI_LOG_E(TAG, "Already encryption");
break;
}
Stream* input_stream = flipper_format_get_raw_stream(input_flipper_format);
FlipperFormat* output_flipper_format = flipper_format_file_alloc(storage);
if(!flipper_format_file_open_always(output_flipper_format, output_file_name)) {
FURI_LOG_E(TAG, "Unable to open file for write: %s", output_file_name);
break;
}
if(!flipper_format_write_header_cstr(
output_flipper_format, string_get_cstr(filetype), SUBGHZ_KEYSTORE_FILE_VERSION)) {
FURI_LOG_E(TAG, "Unable to add header");
break;
}
uint32_t encryption = SubGhzKeystoreEncryptionAES256;
if(!flipper_format_write_uint32(output_flipper_format, "Encryption", &encryption, 1)) {
FURI_LOG_E(TAG, "Unable to add Encryption");
break;
}
if(!flipper_format_write_hex(output_flipper_format, "IV", iv, 16)) {
FURI_LOG_E(TAG, "Unable to add IV");
break;
}
if(!flipper_format_write_string_cstr(output_flipper_format, "Encrypt_data", "RAW")) {
FURI_LOG_E(TAG, "Unable to add Encrypt_data");
break;
}
subghz_keystore_mess_with_iv(iv);
if(!furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv)) {
FURI_LOG_E(TAG, "Unable to load encryption key");
break;
}
Stream* output_stream = flipper_format_get_raw_stream(output_flipper_format);
uint8_t buffer[FILE_BUFFER_SIZE];
bool result = true;
size_t ret = 0;
furi_assert(FILE_BUFFER_SIZE % 16 == 0);
//skip the end of the previous line "\n"
stream_read(input_stream, buffer, 1);
do {
memset(buffer, 0, FILE_BUFFER_SIZE);
ret = stream_read(input_stream, buffer, FILE_BUFFER_SIZE);
if(ret == 0) {
break;
}
for(uint16_t i = 0; i < FILE_BUFFER_SIZE - 1; i += 2) {
uint8_t hi_nibble = 0;
uint8_t lo_nibble = 0;
hex_char_to_hex_nibble(buffer[i], &hi_nibble);
hex_char_to_hex_nibble(buffer[i + 1], &lo_nibble);
buffer[i / 2] = (hi_nibble << 4) | lo_nibble;
}
memset(encrypted_line, 0, SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
// Form encrypted line
if(!furi_hal_crypto_encrypt(
(uint8_t*)buffer, (uint8_t*)encrypted_line, FILE_BUFFER_SIZE / 2)) {
FURI_LOG_E(TAG, "Encryption failed");
result = false;
break;
}
// HEX Encode encrypted line
const char xx[] = "0123456789ABCDEF";
for(size_t i = 0; i < FILE_BUFFER_SIZE / 2; i++) {
size_t cursor = FILE_BUFFER_SIZE / 2 - i - 1;
size_t hex_cursor = FILE_BUFFER_SIZE - i * 2 - 1;
encrypted_line[hex_cursor] = xx[encrypted_line[cursor] & 0xF];
encrypted_line[hex_cursor - 1] = xx[(encrypted_line[cursor] >> 4) & 0xF];
}
stream_write_cstring(output_stream, encrypted_line);
} while(ret > 0 && result);
flipper_format_free(output_flipper_format);
furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT);
if(!result) break;
encrypted = true;
} while(0);
flipper_format_free(input_flipper_format);
free(encrypted_line);
furi_record_close("storage");
return encrypted;
}
bool subghz_keystore_raw_get_data(const char* file_name, size_t offset, uint8_t* data, size_t len) {
bool result = false;
uint8_t iv[16];
uint32_t version;
SubGhzKeystoreEncryption encryption;
string_t str_temp;
string_init(str_temp);
Storage* storage = furi_record_open("storage");
char* decrypted_line = malloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
FlipperFormat* flipper_format = flipper_format_file_alloc(storage);
do {
if(!flipper_format_file_open_existing(flipper_format, file_name)) {
FURI_LOG_E(TAG, "Unable to open file for read: %s", file_name);
break;
}
if(!flipper_format_read_header(flipper_format, str_temp, &version)) {
FURI_LOG_E(TAG, "Missing or incorrect header");
break;
}
if(!flipper_format_read_uint32(flipper_format, "Encryption", (uint32_t*)&encryption, 1)) {
FURI_LOG_E(TAG, "Missing encryption type");
break;
}
if(strcmp(string_get_cstr(str_temp), SUBGHZ_KEYSTORE_FILE_RAW_TYPE) != 0 ||
version != SUBGHZ_KEYSTORE_FILE_VERSION) {
FURI_LOG_E(TAG, "Type or version mismatch");
break;
}
Stream* stream = flipper_format_get_raw_stream(flipper_format);
if(encryption != SubGhzKeystoreEncryptionAES256) {
FURI_LOG_E(TAG, "Unknown encryption");
break;
}
if(offset < 16) {
if(!flipper_format_read_hex(flipper_format, "IV", iv, 16)) {
FURI_LOG_E(TAG, "Missing IV");
break;
}
subghz_keystore_mess_with_iv(iv);
}
if(!flipper_format_read_string(flipper_format, "Encrypt_data", str_temp)) {
FURI_LOG_E(TAG, "Missing Encrypt_data");
break;
}
size_t bufer_size;
if(len <= (16 - offset % 16)) {
bufer_size = 32;
} else {
bufer_size = (((len) / 16) + 2) * 32;
}
furi_assert(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE >= bufer_size / 2);
uint8_t buffer[bufer_size];
size_t ret = 0;
bool decrypted = true;
//skip the end of the previous line "\n"
stream_read(stream, buffer, 1);
size_t size = stream_size(stream);
size -= stream_tell(stream);
if(size < (offset * 2 + len * 2)) {
FURI_LOG_E(TAG, "Seek position exceeds file size");
break;
}
if(offset >= 16) {
stream_seek(stream, ((offset / 16) - 1) * 32, StreamOffsetFromCurrent);
ret = stream_read(stream, buffer, 32);
furi_assert(ret == 32);
for(uint16_t i = 0; i < ret - 1; i += 2) {
uint8_t hi_nibble = 0;
uint8_t lo_nibble = 0;
hex_char_to_hex_nibble(buffer[i], &hi_nibble);
hex_char_to_hex_nibble(buffer[i + 1], &lo_nibble);
iv[i / 2] = (hi_nibble << 4) | lo_nibble;
}
}
if(!furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv)) {
FURI_LOG_E(TAG, "Unable to load encryption key");
break;
}
do {
memset(buffer, 0, bufer_size);
ret = stream_read(stream, buffer, bufer_size);
furi_assert(ret == bufer_size);
for(uint16_t i = 0; i < ret - 1; i += 2) {
uint8_t hi_nibble = 0;
uint8_t lo_nibble = 0;
hex_char_to_hex_nibble(buffer[i], &hi_nibble);
hex_char_to_hex_nibble(buffer[i + 1], &lo_nibble);
buffer[i / 2] = (hi_nibble << 4) | lo_nibble;
}
memset(decrypted_line, 0, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
if(!furi_hal_crypto_decrypt(
(uint8_t*)buffer, (uint8_t*)decrypted_line, bufer_size / 2)) {
decrypted = false;
FURI_LOG_E(TAG, "Decryption failed");
break;
}
memcpy(data, (uint8_t*)decrypted_line + (offset - (offset / 16) * 16), len);
} while(0);
furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT);
if(decrypted) result = true;
} while(0);
flipper_format_free(flipper_format);
furi_record_close("storage");
free(decrypted_line);
string_clear(str_temp);
return result;
}