mirror of
https://github.com/DarkFlippers/unleashed-firmware
synced 2025-01-04 17:08:42 +00:00
385 lines
14 KiB
C
385 lines
14 KiB
C
/* sha256.c - Functions to compute SHA256 and SHA224 message digest of files or
|
|
memory blocks according to the NIST specification FIPS-180-2.
|
|
|
|
Copyright (C) 2005-2006, 2008-2022 Free Software Foundation, Inc.
|
|
|
|
This file is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as
|
|
published by the Free Software Foundation; either version 2.1 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This file is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
/* Written by David Madore, considerably copypasting from
|
|
Scott G. Miller's sha1.c
|
|
*/
|
|
|
|
/* Specification. */
|
|
#if HAVE_OPENSSL_SHA256
|
|
#define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
|
|
#endif
|
|
#include "sha256.h"
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
#define SWAP(n) (n)
|
|
#else
|
|
#include "byteswap.h"
|
|
#define SWAP(n) swap_uint32(n)
|
|
#endif
|
|
|
|
#if !HAVE_OPENSSL_SHA256
|
|
|
|
/* This array contains the bytes used to pad the buffer to the next
|
|
64-byte boundary. */
|
|
static const unsigned char fillbuf[64] = {0x80, 0 /* , 0, 0, ... */};
|
|
|
|
/*
|
|
Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
|
|
initializes it to the start constants of the SHA256 algorithm. This
|
|
must be called before using hash in the call to sha256_hash
|
|
*/
|
|
void sha256_init_ctx(struct sha256_ctx* ctx) {
|
|
ctx->state[0] = 0x6a09e667UL;
|
|
ctx->state[1] = 0xbb67ae85UL;
|
|
ctx->state[2] = 0x3c6ef372UL;
|
|
ctx->state[3] = 0xa54ff53aUL;
|
|
ctx->state[4] = 0x510e527fUL;
|
|
ctx->state[5] = 0x9b05688cUL;
|
|
ctx->state[6] = 0x1f83d9abUL;
|
|
ctx->state[7] = 0x5be0cd19UL;
|
|
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
void sha224_init_ctx(struct sha256_ctx* ctx) {
|
|
ctx->state[0] = 0xc1059ed8UL;
|
|
ctx->state[1] = 0x367cd507UL;
|
|
ctx->state[2] = 0x3070dd17UL;
|
|
ctx->state[3] = 0xf70e5939UL;
|
|
ctx->state[4] = 0xffc00b31UL;
|
|
ctx->state[5] = 0x68581511UL;
|
|
ctx->state[6] = 0x64f98fa7UL;
|
|
ctx->state[7] = 0xbefa4fa4UL;
|
|
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
/* Copy the value from v into the memory location pointed to by *CP,
|
|
If your architecture allows unaligned access, this is equivalent to
|
|
* (__typeof__ (v) *) cp = v */
|
|
static void set_uint32(char* cp, uint32_t v) {
|
|
memcpy(cp, &v, sizeof v);
|
|
}
|
|
|
|
/* Put result from CTX in first 32 bytes following RESBUF.
|
|
The result must be in little endian byte order. */
|
|
void* sha256_read_ctx(const struct sha256_ctx* ctx, void* resbuf) {
|
|
int i;
|
|
char* r = resbuf;
|
|
|
|
for(i = 0; i < 8; i++) set_uint32(r + i * sizeof ctx->state[0], SWAP(ctx->state[i]));
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
void* sha224_read_ctx(const struct sha256_ctx* ctx, void* resbuf) {
|
|
int i;
|
|
char* r = resbuf;
|
|
|
|
for(i = 0; i < 7; i++) set_uint32(r + i * sizeof ctx->state[0], SWAP(ctx->state[i]));
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF. */
|
|
static void sha256_conclude_ctx(struct sha256_ctx* ctx) {
|
|
/* Take yet unprocessed bytes into account. */
|
|
size_t bytes = ctx->buflen;
|
|
size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if(ctx->total[0] < bytes) ++ctx->total[1];
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer.
|
|
Use set_uint32 rather than a simple assignment, to avoid risk of
|
|
unaligned access. */
|
|
set_uint32((char*)&ctx->buffer[size - 2], SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 29)));
|
|
set_uint32((char*)&ctx->buffer[size - 1], SWAP(ctx->total[0] << 3));
|
|
|
|
memcpy(&((char*)ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
|
|
|
|
/* Process last bytes. */
|
|
sha256_process_block(ctx->buffer, size * 4, ctx);
|
|
}
|
|
|
|
void* sha256_finish_ctx(struct sha256_ctx* ctx, void* resbuf) {
|
|
sha256_conclude_ctx(ctx);
|
|
return sha256_read_ctx(ctx, resbuf);
|
|
}
|
|
|
|
void* sha224_finish_ctx(struct sha256_ctx* ctx, void* resbuf) {
|
|
sha256_conclude_ctx(ctx);
|
|
return sha224_read_ctx(ctx, resbuf);
|
|
}
|
|
|
|
/* Compute SHA256 message digest for LEN bytes beginning at BUFFER. The
|
|
result is always in little endian byte order, so that a byte-wise
|
|
output yields to the wanted ASCII representation of the message
|
|
digest. */
|
|
void* sha256_buffer(const char* buffer, size_t len, void* resblock) {
|
|
struct sha256_ctx ctx;
|
|
|
|
/* Initialize the computation context. */
|
|
sha256_init_ctx(&ctx);
|
|
|
|
/* Process whole buffer but last len % 64 bytes. */
|
|
sha256_process_bytes(buffer, len, &ctx);
|
|
|
|
/* Put result in desired memory area. */
|
|
return sha256_finish_ctx(&ctx, resblock);
|
|
}
|
|
|
|
void* sha224_buffer(const char* buffer, size_t len, void* resblock) {
|
|
struct sha256_ctx ctx;
|
|
|
|
/* Initialize the computation context. */
|
|
sha224_init_ctx(&ctx);
|
|
|
|
/* Process whole buffer but last len % 64 bytes. */
|
|
sha256_process_bytes(buffer, len, &ctx);
|
|
|
|
/* Put result in desired memory area. */
|
|
return sha224_finish_ctx(&ctx, resblock);
|
|
}
|
|
|
|
void sha256_process_bytes(const void* buffer, size_t len, struct sha256_ctx* ctx) {
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if(ctx->buflen != 0) {
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
|
|
memcpy(&((char*)ctx->buffer)[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if(ctx->buflen > 64) {
|
|
sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
|
|
|
|
ctx->buflen &= 63;
|
|
/* The regions in the following copy operation cannot overlap,
|
|
because ctx->buflen < 64 ≤ (left_over + add) & ~63. */
|
|
memcpy(ctx->buffer, &((char*)ctx->buffer)[(left_over + add) & ~63], ctx->buflen);
|
|
}
|
|
|
|
buffer = (const char*)buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if(len >= 64) {
|
|
#if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
|
|
#define UNALIGNED_P(p) ((uintptr_t)(p) % sizeof(uint32_t) != 0)
|
|
if(UNALIGNED_P(buffer))
|
|
while(len > 64) {
|
|
sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx);
|
|
buffer = (const char*)buffer + 64;
|
|
len -= 64;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
sha256_process_block(buffer, len & ~63, ctx);
|
|
buffer = (const char*)buffer + (len & ~63);
|
|
len &= 63;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes in internal buffer. */
|
|
if(len > 0) {
|
|
size_t left_over = ctx->buflen;
|
|
|
|
memcpy(&((char*)ctx->buffer)[left_over], buffer, len);
|
|
left_over += len;
|
|
if(left_over >= 64) {
|
|
sha256_process_block(ctx->buffer, 64, ctx);
|
|
left_over -= 64;
|
|
/* The regions in the following copy operation cannot overlap,
|
|
because left_over ≤ 64. */
|
|
memcpy(ctx->buffer, &ctx->buffer[16], left_over);
|
|
}
|
|
ctx->buflen = left_over;
|
|
}
|
|
}
|
|
|
|
/* --- Code below is the primary difference between sha1.c and sha256.c --- */
|
|
|
|
/* SHA256 round constants */
|
|
#define K(I) sha256_round_constants[I]
|
|
static const uint32_t sha256_round_constants[64] = {
|
|
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL,
|
|
0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
|
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL,
|
|
0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
|
|
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
|
|
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
|
|
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL,
|
|
0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
|
|
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL,
|
|
0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
|
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL,
|
|
};
|
|
|
|
/* Round functions. */
|
|
#define F2(A, B, C) ((A & B) | (C & (A | B)))
|
|
#define F1(E, F, G) (G ^ (E & (F ^ G)))
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 64 == 0.
|
|
Most of this code comes from GnuPG's cipher/sha1.c. */
|
|
|
|
void sha256_process_block(const void* buffer, size_t len, struct sha256_ctx* ctx) {
|
|
const uint32_t* words = buffer;
|
|
size_t nwords = len / sizeof(uint32_t);
|
|
const uint32_t* endp = words + nwords;
|
|
uint32_t x[16];
|
|
uint32_t a = ctx->state[0];
|
|
uint32_t b = ctx->state[1];
|
|
uint32_t c = ctx->state[2];
|
|
uint32_t d = ctx->state[3];
|
|
uint32_t e = ctx->state[4];
|
|
uint32_t f = ctx->state[5];
|
|
uint32_t g = ctx->state[6];
|
|
uint32_t h = ctx->state[7];
|
|
uint32_t lolen = len;
|
|
|
|
/* First increment the byte count. FIPS PUB 180-2 specifies the possible
|
|
length of the file up to 2^64 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += lolen;
|
|
ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
|
|
|
|
#define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
|
|
#define S0(x) (rol(x, 25) ^ rol(x, 14) ^ (x >> 3))
|
|
#define S1(x) (rol(x, 15) ^ rol(x, 13) ^ (x >> 10))
|
|
#define SS0(x) (rol(x, 30) ^ rol(x, 19) ^ rol(x, 10))
|
|
#define SS1(x) (rol(x, 26) ^ rol(x, 21) ^ rol(x, 7))
|
|
|
|
#define M(I) \
|
|
(tm = S1(x[(I - 2) & 0x0f]) + x[(I - 7) & 0x0f] + S0(x[(I - 15) & 0x0f]) + x[I & 0x0f], \
|
|
x[I & 0x0f] = tm)
|
|
|
|
#define R(A, B, C, D, E, F, G, H, K, M) \
|
|
do { \
|
|
t0 = SS0(A) + F2(A, B, C); \
|
|
t1 = H + SS1(E) + F1(E, F, G) + K + M; \
|
|
D += t1; \
|
|
H = t0 + t1; \
|
|
} while(0)
|
|
|
|
while(words < endp) {
|
|
uint32_t tm;
|
|
uint32_t t0, t1;
|
|
int t;
|
|
/* FIXME: see sha1.c for a better implementation. */
|
|
for(t = 0; t < 16; t++) {
|
|
x[t] = SWAP(*words);
|
|
words++;
|
|
}
|
|
|
|
R(a, b, c, d, e, f, g, h, K(0), x[0]);
|
|
R(h, a, b, c, d, e, f, g, K(1), x[1]);
|
|
R(g, h, a, b, c, d, e, f, K(2), x[2]);
|
|
R(f, g, h, a, b, c, d, e, K(3), x[3]);
|
|
R(e, f, g, h, a, b, c, d, K(4), x[4]);
|
|
R(d, e, f, g, h, a, b, c, K(5), x[5]);
|
|
R(c, d, e, f, g, h, a, b, K(6), x[6]);
|
|
R(b, c, d, e, f, g, h, a, K(7), x[7]);
|
|
R(a, b, c, d, e, f, g, h, K(8), x[8]);
|
|
R(h, a, b, c, d, e, f, g, K(9), x[9]);
|
|
R(g, h, a, b, c, d, e, f, K(10), x[10]);
|
|
R(f, g, h, a, b, c, d, e, K(11), x[11]);
|
|
R(e, f, g, h, a, b, c, d, K(12), x[12]);
|
|
R(d, e, f, g, h, a, b, c, K(13), x[13]);
|
|
R(c, d, e, f, g, h, a, b, K(14), x[14]);
|
|
R(b, c, d, e, f, g, h, a, K(15), x[15]);
|
|
R(a, b, c, d, e, f, g, h, K(16), M(16));
|
|
R(h, a, b, c, d, e, f, g, K(17), M(17));
|
|
R(g, h, a, b, c, d, e, f, K(18), M(18));
|
|
R(f, g, h, a, b, c, d, e, K(19), M(19));
|
|
R(e, f, g, h, a, b, c, d, K(20), M(20));
|
|
R(d, e, f, g, h, a, b, c, K(21), M(21));
|
|
R(c, d, e, f, g, h, a, b, K(22), M(22));
|
|
R(b, c, d, e, f, g, h, a, K(23), M(23));
|
|
R(a, b, c, d, e, f, g, h, K(24), M(24));
|
|
R(h, a, b, c, d, e, f, g, K(25), M(25));
|
|
R(g, h, a, b, c, d, e, f, K(26), M(26));
|
|
R(f, g, h, a, b, c, d, e, K(27), M(27));
|
|
R(e, f, g, h, a, b, c, d, K(28), M(28));
|
|
R(d, e, f, g, h, a, b, c, K(29), M(29));
|
|
R(c, d, e, f, g, h, a, b, K(30), M(30));
|
|
R(b, c, d, e, f, g, h, a, K(31), M(31));
|
|
R(a, b, c, d, e, f, g, h, K(32), M(32));
|
|
R(h, a, b, c, d, e, f, g, K(33), M(33));
|
|
R(g, h, a, b, c, d, e, f, K(34), M(34));
|
|
R(f, g, h, a, b, c, d, e, K(35), M(35));
|
|
R(e, f, g, h, a, b, c, d, K(36), M(36));
|
|
R(d, e, f, g, h, a, b, c, K(37), M(37));
|
|
R(c, d, e, f, g, h, a, b, K(38), M(38));
|
|
R(b, c, d, e, f, g, h, a, K(39), M(39));
|
|
R(a, b, c, d, e, f, g, h, K(40), M(40));
|
|
R(h, a, b, c, d, e, f, g, K(41), M(41));
|
|
R(g, h, a, b, c, d, e, f, K(42), M(42));
|
|
R(f, g, h, a, b, c, d, e, K(43), M(43));
|
|
R(e, f, g, h, a, b, c, d, K(44), M(44));
|
|
R(d, e, f, g, h, a, b, c, K(45), M(45));
|
|
R(c, d, e, f, g, h, a, b, K(46), M(46));
|
|
R(b, c, d, e, f, g, h, a, K(47), M(47));
|
|
R(a, b, c, d, e, f, g, h, K(48), M(48));
|
|
R(h, a, b, c, d, e, f, g, K(49), M(49));
|
|
R(g, h, a, b, c, d, e, f, K(50), M(50));
|
|
R(f, g, h, a, b, c, d, e, K(51), M(51));
|
|
R(e, f, g, h, a, b, c, d, K(52), M(52));
|
|
R(d, e, f, g, h, a, b, c, K(53), M(53));
|
|
R(c, d, e, f, g, h, a, b, K(54), M(54));
|
|
R(b, c, d, e, f, g, h, a, K(55), M(55));
|
|
R(a, b, c, d, e, f, g, h, K(56), M(56));
|
|
R(h, a, b, c, d, e, f, g, K(57), M(57));
|
|
R(g, h, a, b, c, d, e, f, K(58), M(58));
|
|
R(f, g, h, a, b, c, d, e, K(59), M(59));
|
|
R(e, f, g, h, a, b, c, d, K(60), M(60));
|
|
R(d, e, f, g, h, a, b, c, K(61), M(61));
|
|
R(c, d, e, f, g, h, a, b, K(62), M(62));
|
|
R(b, c, d, e, f, g, h, a, K(63), M(63));
|
|
|
|
a = ctx->state[0] += a;
|
|
b = ctx->state[1] += b;
|
|
c = ctx->state[2] += c;
|
|
d = ctx->state[3] += d;
|
|
e = ctx->state[4] += e;
|
|
f = ctx->state[5] += f;
|
|
g = ctx->state[6] += g;
|
|
h = ctx->state[7] += h;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Hey Emacs!
|
|
* Local Variables:
|
|
* coding: utf-8
|
|
* End:
|
|
*/
|