unleashed-firmware/firmware/targets/f7/furi_hal/furi_hal_infrared.c
あく 0d8518d31d
[FL-3232] FuriHal: fix gpio naming and add explicit pulls for vibro, speaker and ir_tx (#2565)
* FuriHal: fix gpio naming and add explicit pulls for vibro, speaker and ir_tx
* Github: workflow event debug print
* Github: proper PR head commit SHA extraction in get_env.py
2023-04-06 19:06:19 +10:00

675 lines
26 KiB
C

#include <furi_hal_infrared.h>
#include <core/check.h>
#include "stm32wbxx_ll_dma.h"
#include "sys/_stdint.h"
#include <furi_hal_interrupt.h>
#include <furi_hal_resources.h>
#include <stdint.h>
#include <stm32wbxx_ll_tim.h>
#include <stm32wbxx_ll_gpio.h>
#include <stdio.h>
#include <furi.h>
#include <math.h>
#define INFRARED_TX_DEBUG 0
#if INFRARED_TX_DEBUG == 1
#define gpio_infrared_tx gpio_infrared_tx_debug
const GpioPin gpio_infrared_tx_debug = {.port = GPIOA, .pin = GpioModeAnalog};
#endif
#define INFRARED_TIM_TX_DMA_BUFFER_SIZE 200
#define INFRARED_POLARITY_SHIFT 1
#define INFRARED_TX_CCMR_HIGH \
(TIM_CCMR2_OC3PE | LL_TIM_OCMODE_PWM2) /* Mark time - enable PWM2 mode */
#define INFRARED_TX_CCMR_LOW \
(TIM_CCMR2_OC3PE | LL_TIM_OCMODE_FORCED_INACTIVE) /* Space time - force low */
/* DMA Channels definition */
#define IR_DMA DMA2
#define IR_DMA_CH1_CHANNEL LL_DMA_CHANNEL_1
#define IR_DMA_CH2_CHANNEL LL_DMA_CHANNEL_2
#define IR_DMA_CH1_IRQ FuriHalInterruptIdDma2Ch1
#define IR_DMA_CH2_IRQ FuriHalInterruptIdDma2Ch2
#define IR_DMA_CH1_DEF IR_DMA, IR_DMA_CH1_CHANNEL
#define IR_DMA_CH2_DEF IR_DMA, IR_DMA_CH2_CHANNEL
typedef struct {
FuriHalInfraredRxCaptureCallback capture_callback;
void* capture_context;
FuriHalInfraredRxTimeoutCallback timeout_callback;
void* timeout_context;
} InfraredTimRx;
typedef struct {
uint8_t* polarity;
uint16_t* data;
size_t size;
bool packet_end;
bool last_packet_end;
} InfraredTxBuf;
typedef struct {
float cycle_duration;
FuriHalInfraredTxGetDataISRCallback data_callback;
FuriHalInfraredTxSignalSentISRCallback signal_sent_callback;
void* data_context;
void* signal_sent_context;
InfraredTxBuf buffer[2];
FuriSemaphore* stop_semaphore;
uint32_t
tx_timing_rest_duration; /** if timing is too long (> 0xFFFF), send it in few iterations */
bool tx_timing_rest_level;
FuriHalInfraredTxGetDataState tx_timing_rest_status;
} InfraredTimTx;
typedef enum {
InfraredStateIdle, /** Furi Hal Infrared is ready to start RX or TX */
InfraredStateAsyncRx, /** Async RX started */
InfraredStateAsyncTx, /** Async TX started, DMA and timer is on */
InfraredStateAsyncTxStopReq, /** Async TX started, async stop request received */
InfraredStateAsyncTxStopInProgress, /** Async TX started, stop request is processed and we wait for last data to be sent */
InfraredStateAsyncTxStopped, /** Async TX complete, cleanup needed */
InfraredStateMAX,
} InfraredState;
static volatile InfraredState furi_hal_infrared_state = InfraredStateIdle;
static InfraredTimTx infrared_tim_tx;
static InfraredTimRx infrared_tim_rx;
static void furi_hal_infrared_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift);
static void furi_hal_infrared_async_tx_free_resources(void);
static void furi_hal_infrared_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift);
static void furi_hal_infrared_tx_dma_set_buffer(uint8_t buf_num);
static void furi_hal_infrared_tx_fill_buffer_last(uint8_t buf_num);
static uint8_t furi_hal_infrared_get_current_dma_tx_buffer(void);
static void furi_hal_infrared_tx_dma_polarity_isr();
static void furi_hal_infrared_tx_dma_isr();
static void furi_hal_infrared_tim_rx_isr() {
static uint32_t previous_captured_ch2 = 0;
/* Timeout */
if(LL_TIM_IsActiveFlag_CC3(TIM2)) {
LL_TIM_ClearFlag_CC3(TIM2);
furi_assert(furi_hal_infrared_state == InfraredStateAsyncRx);
/* Timers CNT register starts to counting from 0 to ARR, but it is
* reseted when Channel 1 catches interrupt. It is not reseted by
* channel 2, though, so we have to distract it's values (see TimerIRQSourceCCI1 ISR).
* This can cause false timeout: when time is over, but we started
* receiving new signal few microseconds ago, because CNT register
* is reseted once per period, not per sample. */
if(LL_GPIO_IsInputPinSet(gpio_infrared_rx.port, gpio_infrared_rx.pin) != 0) {
if(infrared_tim_rx.timeout_callback)
infrared_tim_rx.timeout_callback(infrared_tim_rx.timeout_context);
}
}
/* Rising Edge */
if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
LL_TIM_ClearFlag_CC1(TIM2);
furi_assert(furi_hal_infrared_state == InfraredStateAsyncRx);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC1S)) {
/* Low pin level is a Mark state of INFRARED signal. Invert level for further processing. */
uint32_t duration = LL_TIM_IC_GetCaptureCH1(TIM2) - previous_captured_ch2;
if(infrared_tim_rx.capture_callback)
infrared_tim_rx.capture_callback(infrared_tim_rx.capture_context, 1, duration);
} else {
furi_assert(0);
}
}
/* Falling Edge */
if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
LL_TIM_ClearFlag_CC2(TIM2);
furi_assert(furi_hal_infrared_state == InfraredStateAsyncRx);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC2S)) {
/* High pin level is a Space state of INFRARED signal. Invert level for further processing. */
uint32_t duration = LL_TIM_IC_GetCaptureCH2(TIM2);
previous_captured_ch2 = duration;
if(infrared_tim_rx.capture_callback)
infrared_tim_rx.capture_callback(infrared_tim_rx.capture_context, 0, duration);
} else {
furi_assert(0);
}
}
}
void furi_hal_infrared_async_rx_start(void) {
furi_assert(furi_hal_infrared_state == InfraredStateIdle);
furi_hal_gpio_init_ex(
&gpio_infrared_rx, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64 - 1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 0x7FFFFFFE;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM2);
LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI1FP1);
LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
LL_TIM_CC_DisableChannel(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_FALLING);
LL_TIM_DisableIT_TRIG(TIM2);
LL_TIM_DisableDMAReq_TRIG(TIM2);
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
LL_TIM_EnableMasterSlaveMode(TIM2);
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING);
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_INDIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, furi_hal_infrared_tim_rx_isr, NULL);
furi_hal_infrared_state = InfraredStateAsyncRx;
LL_TIM_EnableIT_CC1(TIM2);
LL_TIM_EnableIT_CC2(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
}
void furi_hal_infrared_async_rx_stop(void) {
furi_assert(furi_hal_infrared_state == InfraredStateAsyncRx);
FURI_CRITICAL_ENTER();
LL_TIM_DeInit(TIM2);
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL);
furi_hal_infrared_state = InfraredStateIdle;
FURI_CRITICAL_EXIT();
}
void furi_hal_infrared_async_rx_set_timeout(uint32_t timeout_us) {
LL_TIM_OC_SetCompareCH3(TIM2, timeout_us);
LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_ACTIVE);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH3);
LL_TIM_EnableIT_CC3(TIM2);
}
bool furi_hal_infrared_is_busy(void) {
return furi_hal_infrared_state != InfraredStateIdle;
}
void furi_hal_infrared_async_rx_set_capture_isr_callback(
FuriHalInfraredRxCaptureCallback callback,
void* ctx) {
infrared_tim_rx.capture_callback = callback;
infrared_tim_rx.capture_context = ctx;
}
void furi_hal_infrared_async_rx_set_timeout_isr_callback(
FuriHalInfraredRxTimeoutCallback callback,
void* ctx) {
infrared_tim_rx.timeout_callback = callback;
infrared_tim_rx.timeout_context = ctx;
}
static void furi_hal_infrared_tx_dma_terminate(void) {
LL_DMA_DisableIT_TC(IR_DMA_CH1_DEF);
LL_DMA_DisableIT_HT(IR_DMA_CH2_DEF);
LL_DMA_DisableIT_TC(IR_DMA_CH2_DEF);
furi_assert(furi_hal_infrared_state == InfraredStateAsyncTxStopInProgress);
LL_DMA_DisableIT_TC(IR_DMA_CH1_DEF);
LL_DMA_DisableChannel(IR_DMA_CH2_DEF);
LL_DMA_DisableChannel(IR_DMA_CH1_DEF);
LL_TIM_DisableCounter(TIM1);
FuriStatus status = furi_semaphore_release(infrared_tim_tx.stop_semaphore);
furi_check(status == FuriStatusOk);
furi_hal_infrared_state = InfraredStateAsyncTxStopped;
}
static uint8_t furi_hal_infrared_get_current_dma_tx_buffer(void) {
uint8_t buf_num = 0;
uint32_t buffer_adr = LL_DMA_GetMemoryAddress(IR_DMA_CH2_DEF);
if(buffer_adr == (uint32_t)infrared_tim_tx.buffer[0].data) {
buf_num = 0;
} else if(buffer_adr == (uint32_t)infrared_tim_tx.buffer[1].data) {
buf_num = 1;
} else {
furi_assert(0);
}
return buf_num;
}
static void furi_hal_infrared_tx_dma_polarity_isr() {
#if IR_DMA_CH1_CHANNEL == LL_DMA_CHANNEL_1
if(LL_DMA_IsActiveFlag_TE1(IR_DMA)) {
LL_DMA_ClearFlag_TE1(IR_DMA);
furi_crash(NULL);
}
if(LL_DMA_IsActiveFlag_TC1(IR_DMA) && LL_DMA_IsEnabledIT_TC(IR_DMA_CH1_DEF)) {
LL_DMA_ClearFlag_TC1(IR_DMA);
furi_check(
(furi_hal_infrared_state == InfraredStateAsyncTx) ||
(furi_hal_infrared_state == InfraredStateAsyncTxStopReq) ||
(furi_hal_infrared_state == InfraredStateAsyncTxStopInProgress));
/* actually TC2 is processed and buffer is next buffer */
uint8_t next_buf_num = furi_hal_infrared_get_current_dma_tx_buffer();
furi_hal_infrared_tx_dma_set_polarity(next_buf_num, 0);
}
#else
#error Update this code. Would you kindly?
#endif
}
static void furi_hal_infrared_tx_dma_isr() {
#if IR_DMA_CH2_CHANNEL == LL_DMA_CHANNEL_2
if(LL_DMA_IsActiveFlag_TE2(IR_DMA)) {
LL_DMA_ClearFlag_TE2(IR_DMA);
furi_crash(NULL);
}
if(LL_DMA_IsActiveFlag_HT2(IR_DMA) && LL_DMA_IsEnabledIT_HT(IR_DMA_CH2_DEF)) {
LL_DMA_ClearFlag_HT2(IR_DMA);
uint8_t buf_num = furi_hal_infrared_get_current_dma_tx_buffer();
uint8_t next_buf_num = !buf_num;
if(infrared_tim_tx.buffer[buf_num].last_packet_end) {
LL_DMA_DisableIT_HT(IR_DMA_CH2_DEF);
} else if(
!infrared_tim_tx.buffer[buf_num].packet_end ||
(furi_hal_infrared_state == InfraredStateAsyncTx)) {
furi_hal_infrared_tx_fill_buffer(next_buf_num, 0);
if(infrared_tim_tx.buffer[next_buf_num].last_packet_end) {
LL_DMA_DisableIT_HT(IR_DMA_CH2_DEF);
}
} else if(furi_hal_infrared_state == InfraredStateAsyncTxStopReq) {
/* fallthrough */
} else {
furi_crash(NULL);
}
}
if(LL_DMA_IsActiveFlag_TC2(IR_DMA) && LL_DMA_IsEnabledIT_TC(IR_DMA_CH2_DEF)) {
LL_DMA_ClearFlag_TC2(IR_DMA);
furi_check(
(furi_hal_infrared_state == InfraredStateAsyncTxStopInProgress) ||
(furi_hal_infrared_state == InfraredStateAsyncTxStopReq) ||
(furi_hal_infrared_state == InfraredStateAsyncTx));
uint8_t buf_num = furi_hal_infrared_get_current_dma_tx_buffer();
uint8_t next_buf_num = !buf_num;
if(furi_hal_infrared_state == InfraredStateAsyncTxStopInProgress) {
furi_hal_infrared_tx_dma_terminate();
} else if(
infrared_tim_tx.buffer[buf_num].last_packet_end ||
(infrared_tim_tx.buffer[buf_num].packet_end &&
(furi_hal_infrared_state == InfraredStateAsyncTxStopReq))) {
furi_hal_infrared_state = InfraredStateAsyncTxStopInProgress;
furi_hal_infrared_tx_fill_buffer_last(next_buf_num);
furi_hal_infrared_tx_dma_set_buffer(next_buf_num);
} else {
/* if it's not end of the packet - continue receiving */
furi_hal_infrared_tx_dma_set_buffer(next_buf_num);
}
if(infrared_tim_tx.signal_sent_callback && infrared_tim_tx.buffer[buf_num].packet_end &&
(furi_hal_infrared_state != InfraredStateAsyncTxStopped)) {
infrared_tim_tx.signal_sent_callback(infrared_tim_tx.signal_sent_context);
}
}
#else
#error Update this code. Would you kindly?
#endif
}
static void furi_hal_infrared_configure_tim_pwm_tx(uint32_t freq, float duty_cycle) {
/* LL_DBGMCU_APB2_GRP1_FreezePeriph(LL_DBGMCU_APB2_GRP1_TIM1_STOP); */
LL_TIM_DisableCounter(TIM1);
LL_TIM_SetRepetitionCounter(TIM1, 0);
LL_TIM_SetCounter(TIM1, 0);
LL_TIM_SetPrescaler(TIM1, 0);
LL_TIM_SetCounterMode(TIM1, LL_TIM_COUNTERMODE_UP);
LL_TIM_EnableARRPreload(TIM1);
LL_TIM_SetAutoReload(
TIM1, __LL_TIM_CALC_ARR(SystemCoreClock, LL_TIM_GetPrescaler(TIM1), freq));
#if INFRARED_TX_DEBUG == 1
LL_TIM_OC_SetCompareCH1(TIM1, ((LL_TIM_GetAutoReload(TIM1) + 1) * (1 - duty_cycle)));
LL_TIM_OC_EnablePreload(TIM1, LL_TIM_CHANNEL_CH1);
/* LL_TIM_OCMODE_PWM2 set by DMA */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_FORCED_INACTIVE);
LL_TIM_OC_SetPolarity(TIM1, LL_TIM_CHANNEL_CH1N, LL_TIM_OCPOLARITY_HIGH);
LL_TIM_OC_DisableFast(TIM1, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1N);
LL_TIM_DisableIT_CC1(TIM1);
#else
LL_TIM_OC_SetCompareCH3(TIM1, ((LL_TIM_GetAutoReload(TIM1) + 1) * (1 - duty_cycle)));
LL_TIM_OC_EnablePreload(TIM1, LL_TIM_CHANNEL_CH3);
/* LL_TIM_OCMODE_PWM2 set by DMA */
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_FORCED_INACTIVE);
LL_TIM_OC_SetPolarity(TIM1, LL_TIM_CHANNEL_CH3N, LL_TIM_OCPOLARITY_HIGH);
LL_TIM_OC_DisableFast(TIM1, LL_TIM_CHANNEL_CH3);
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH3N);
LL_TIM_DisableIT_CC3(TIM1);
#endif
LL_TIM_DisableMasterSlaveMode(TIM1);
LL_TIM_EnableAllOutputs(TIM1);
LL_TIM_DisableIT_UPDATE(TIM1);
LL_TIM_EnableDMAReq_UPDATE(TIM1);
NVIC_SetPriority(TIM1_UP_TIM16_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn);
}
static void furi_hal_infrared_configure_tim_cmgr2_dma_tx(void) {
LL_DMA_InitTypeDef dma_config = {0};
#if INFRARED_TX_DEBUG == 1
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM1->CCMR1);
#else
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM1->CCMR2);
#endif
dma_config.MemoryOrM2MDstAddress = (uint32_t)NULL;
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_NORMAL;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
/* fill word to have other bits set to 0 */
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE;
dma_config.NbData = 0;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
dma_config.Priority = LL_DMA_PRIORITY_VERYHIGH;
LL_DMA_Init(IR_DMA_CH1_DEF, &dma_config);
#if IR_DMA_CH1_CHANNEL == LL_DMA_CHANNEL_1
LL_DMA_ClearFlag_TE1(IR_DMA);
LL_DMA_ClearFlag_TC1(IR_DMA);
#else
#error Update this code. Would you kindly?
#endif
LL_DMA_EnableIT_TE(IR_DMA_CH1_DEF);
LL_DMA_EnableIT_TC(IR_DMA_CH1_DEF);
furi_hal_interrupt_set_isr_ex(IR_DMA_CH1_IRQ, 4, furi_hal_infrared_tx_dma_polarity_isr, NULL);
}
static void furi_hal_infrared_configure_tim_rcr_dma_tx(void) {
LL_DMA_InitTypeDef dma_config = {0};
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM1->RCR);
dma_config.MemoryOrM2MDstAddress = (uint32_t)NULL;
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_NORMAL;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_HALFWORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_HALFWORD;
dma_config.NbData = 0;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
dma_config.Priority = LL_DMA_PRIORITY_MEDIUM;
LL_DMA_Init(IR_DMA_CH2_DEF, &dma_config);
#if IR_DMA_CH2_CHANNEL == LL_DMA_CHANNEL_2
LL_DMA_ClearFlag_TC2(IR_DMA);
LL_DMA_ClearFlag_HT2(IR_DMA);
LL_DMA_ClearFlag_TE2(IR_DMA);
#else
#error Update this code. Would you kindly?
#endif
LL_DMA_EnableIT_TC(IR_DMA_CH2_DEF);
LL_DMA_EnableIT_HT(IR_DMA_CH2_DEF);
LL_DMA_EnableIT_TE(IR_DMA_CH2_DEF);
furi_hal_interrupt_set_isr_ex(IR_DMA_CH2_IRQ, 5, furi_hal_infrared_tx_dma_isr, NULL);
}
static void furi_hal_infrared_tx_fill_buffer_last(uint8_t buf_num) {
furi_assert(buf_num < 2);
furi_assert(furi_hal_infrared_state != InfraredStateAsyncRx);
furi_assert(furi_hal_infrared_state < InfraredStateMAX);
furi_assert(infrared_tim_tx.data_callback);
InfraredTxBuf* buffer = &infrared_tim_tx.buffer[buf_num];
furi_assert(buffer->data != NULL);
(void)buffer->data;
furi_assert(buffer->polarity != NULL);
(void)buffer->polarity;
infrared_tim_tx.buffer[buf_num].data[0] = 0; // 1 pulse
infrared_tim_tx.buffer[buf_num].polarity[0] = INFRARED_TX_CCMR_LOW;
infrared_tim_tx.buffer[buf_num].data[1] = 0; // 1 pulse
infrared_tim_tx.buffer[buf_num].polarity[1] = INFRARED_TX_CCMR_LOW;
infrared_tim_tx.buffer[buf_num].size = 2;
infrared_tim_tx.buffer[buf_num].last_packet_end = true;
infrared_tim_tx.buffer[buf_num].packet_end = true;
}
static void furi_hal_infrared_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift) {
furi_assert(buf_num < 2);
furi_assert(furi_hal_infrared_state != InfraredStateAsyncRx);
furi_assert(furi_hal_infrared_state < InfraredStateMAX);
furi_assert(infrared_tim_tx.data_callback);
InfraredTxBuf* buffer = &infrared_tim_tx.buffer[buf_num];
furi_assert(buffer->data != NULL);
furi_assert(buffer->polarity != NULL);
FuriHalInfraredTxGetDataState status = FuriHalInfraredTxGetDataStateOk;
uint32_t duration = 0;
bool level = 0;
size_t* size = &buffer->size;
size_t polarity_counter = 0;
while(polarity_shift--) {
buffer->polarity[polarity_counter++] = INFRARED_TX_CCMR_LOW;
}
for(*size = 0; (*size < INFRARED_TIM_TX_DMA_BUFFER_SIZE) &&
(status == FuriHalInfraredTxGetDataStateOk);) {
if(infrared_tim_tx.tx_timing_rest_duration > 0) {
if(infrared_tim_tx.tx_timing_rest_duration > 0xFFFF) {
buffer->data[*size] = 0xFFFF;
status = FuriHalInfraredTxGetDataStateOk;
} else {
buffer->data[*size] = infrared_tim_tx.tx_timing_rest_duration;
status = infrared_tim_tx.tx_timing_rest_status;
}
infrared_tim_tx.tx_timing_rest_duration -= buffer->data[*size];
buffer->polarity[polarity_counter] = infrared_tim_tx.tx_timing_rest_level ?
INFRARED_TX_CCMR_HIGH :
INFRARED_TX_CCMR_LOW;
++(*size);
++polarity_counter;
continue;
}
status = infrared_tim_tx.data_callback(infrared_tim_tx.data_context, &duration, &level);
uint32_t num_of_impulses = roundf(duration / infrared_tim_tx.cycle_duration);
if(num_of_impulses == 0) {
if((*size == 0) && (status == FuriHalInfraredTxGetDataStateDone)) {
/* if this is one sample in current buffer, but we
* have more to send - continue
*/
status = FuriHalInfraredTxGetDataStateOk;
}
} else if((num_of_impulses - 1) > 0xFFFF) {
infrared_tim_tx.tx_timing_rest_duration = num_of_impulses - 1;
infrared_tim_tx.tx_timing_rest_status = status;
infrared_tim_tx.tx_timing_rest_level = level;
status = FuriHalInfraredTxGetDataStateOk;
} else {
buffer->polarity[polarity_counter] = level ? INFRARED_TX_CCMR_HIGH :
INFRARED_TX_CCMR_LOW;
buffer->data[*size] = num_of_impulses - 1;
++(*size);
++polarity_counter;
}
}
buffer->last_packet_end = (status == FuriHalInfraredTxGetDataStateLastDone);
buffer->packet_end = buffer->last_packet_end || (status == FuriHalInfraredTxGetDataStateDone);
if(*size == 0) {
buffer->data[0] = 0; // 1 pulse
buffer->polarity[0] = INFRARED_TX_CCMR_LOW;
buffer->size = 1;
}
}
static void furi_hal_infrared_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift) {
furi_assert(buf_num < 2);
furi_assert(furi_hal_infrared_state < InfraredStateMAX);
InfraredTxBuf* buffer = &infrared_tim_tx.buffer[buf_num];
furi_assert(buffer->polarity != NULL);
FURI_CRITICAL_ENTER();
bool channel_enabled = LL_DMA_IsEnabledChannel(IR_DMA_CH1_DEF);
if(channel_enabled) {
LL_DMA_DisableChannel(IR_DMA_CH1_DEF);
}
LL_DMA_SetMemoryAddress(IR_DMA_CH1_DEF, (uint32_t)buffer->polarity);
LL_DMA_SetDataLength(IR_DMA_CH1_DEF, buffer->size + polarity_shift);
if(channel_enabled) {
LL_DMA_EnableChannel(IR_DMA_CH1_DEF);
}
FURI_CRITICAL_EXIT();
}
static void furi_hal_infrared_tx_dma_set_buffer(uint8_t buf_num) {
furi_assert(buf_num < 2);
furi_assert(furi_hal_infrared_state < InfraredStateMAX);
InfraredTxBuf* buffer = &infrared_tim_tx.buffer[buf_num];
furi_assert(buffer->data != NULL);
/* non-circular mode requires disabled channel before setup */
FURI_CRITICAL_ENTER();
bool channel_enabled = LL_DMA_IsEnabledChannel(IR_DMA_CH2_DEF);
if(channel_enabled) {
LL_DMA_DisableChannel(IR_DMA_CH2_DEF);
}
LL_DMA_SetMemoryAddress(IR_DMA_CH2_DEF, (uint32_t)buffer->data);
LL_DMA_SetDataLength(IR_DMA_CH2_DEF, buffer->size);
if(channel_enabled) {
LL_DMA_EnableChannel(IR_DMA_CH2_DEF);
}
FURI_CRITICAL_EXIT();
}
static void furi_hal_infrared_async_tx_free_resources(void) {
furi_assert(
(furi_hal_infrared_state == InfraredStateIdle) ||
(furi_hal_infrared_state == InfraredStateAsyncTxStopped));
furi_hal_gpio_init(&gpio_infrared_tx, GpioModeAnalog, GpioPullDown, GpioSpeedLow);
furi_hal_interrupt_set_isr(IR_DMA_CH1_IRQ, NULL, NULL);
furi_hal_interrupt_set_isr(IR_DMA_CH2_IRQ, NULL, NULL);
LL_TIM_DeInit(TIM1);
furi_semaphore_free(infrared_tim_tx.stop_semaphore);
free(infrared_tim_tx.buffer[0].data);
free(infrared_tim_tx.buffer[1].data);
free(infrared_tim_tx.buffer[0].polarity);
free(infrared_tim_tx.buffer[1].polarity);
infrared_tim_tx.buffer[0].data = NULL;
infrared_tim_tx.buffer[1].data = NULL;
infrared_tim_tx.buffer[0].polarity = NULL;
infrared_tim_tx.buffer[1].polarity = NULL;
}
void furi_hal_infrared_async_tx_start(uint32_t freq, float duty_cycle) {
if((duty_cycle > 1) || (duty_cycle <= 0) || (freq > INFRARED_MAX_FREQUENCY) ||
(freq < INFRARED_MIN_FREQUENCY) || (infrared_tim_tx.data_callback == NULL)) {
furi_crash(NULL);
}
furi_assert(furi_hal_infrared_state == InfraredStateIdle);
furi_assert(infrared_tim_tx.buffer[0].data == NULL);
furi_assert(infrared_tim_tx.buffer[1].data == NULL);
furi_assert(infrared_tim_tx.buffer[0].polarity == NULL);
furi_assert(infrared_tim_tx.buffer[1].polarity == NULL);
size_t alloc_size_data = INFRARED_TIM_TX_DMA_BUFFER_SIZE * sizeof(uint16_t);
infrared_tim_tx.buffer[0].data = malloc(alloc_size_data);
infrared_tim_tx.buffer[1].data = malloc(alloc_size_data);
size_t alloc_size_polarity =
(INFRARED_TIM_TX_DMA_BUFFER_SIZE + INFRARED_POLARITY_SHIFT) * sizeof(uint8_t);
infrared_tim_tx.buffer[0].polarity = malloc(alloc_size_polarity);
infrared_tim_tx.buffer[1].polarity = malloc(alloc_size_polarity);
infrared_tim_tx.stop_semaphore = furi_semaphore_alloc(1, 0);
infrared_tim_tx.cycle_duration = 1000000.0 / freq;
infrared_tim_tx.tx_timing_rest_duration = 0;
furi_hal_infrared_tx_fill_buffer(0, INFRARED_POLARITY_SHIFT);
furi_hal_infrared_configure_tim_pwm_tx(freq, duty_cycle);
furi_hal_infrared_configure_tim_cmgr2_dma_tx();
furi_hal_infrared_configure_tim_rcr_dma_tx();
furi_hal_infrared_tx_dma_set_polarity(0, INFRARED_POLARITY_SHIFT);
furi_hal_infrared_tx_dma_set_buffer(0);
furi_hal_infrared_state = InfraredStateAsyncTx;
LL_TIM_ClearFlag_UPDATE(TIM1);
LL_DMA_EnableChannel(IR_DMA_CH1_DEF);
LL_DMA_EnableChannel(IR_DMA_CH2_DEF);
furi_delay_us(5);
LL_TIM_GenerateEvent_UPDATE(TIM1); /* DMA -> TIMx_RCR */
furi_delay_us(5);
LL_GPIO_ResetOutputPin(
gpio_infrared_tx.port, gpio_infrared_tx.pin); /* when disable it prevents false pulse */
furi_hal_gpio_init_ex(
&gpio_infrared_tx, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedHigh, GpioAltFn1TIM1);
FURI_CRITICAL_ENTER();
LL_TIM_GenerateEvent_UPDATE(TIM1); /* TIMx_RCR -> Repetition counter */
LL_TIM_EnableCounter(TIM1);
FURI_CRITICAL_EXIT();
}
void furi_hal_infrared_async_tx_wait_termination(void) {
furi_assert(furi_hal_infrared_state >= InfraredStateAsyncTx);
furi_assert(furi_hal_infrared_state < InfraredStateMAX);
FuriStatus status;
status = furi_semaphore_acquire(infrared_tim_tx.stop_semaphore, FuriWaitForever);
furi_check(status == FuriStatusOk);
furi_hal_infrared_async_tx_free_resources();
furi_hal_infrared_state = InfraredStateIdle;
}
void furi_hal_infrared_async_tx_stop(void) {
furi_assert(furi_hal_infrared_state >= InfraredStateAsyncTx);
furi_assert(furi_hal_infrared_state < InfraredStateMAX);
FURI_CRITICAL_ENTER();
if(furi_hal_infrared_state == InfraredStateAsyncTx)
furi_hal_infrared_state = InfraredStateAsyncTxStopReq;
FURI_CRITICAL_EXIT();
furi_hal_infrared_async_tx_wait_termination();
}
void furi_hal_infrared_async_tx_set_data_isr_callback(
FuriHalInfraredTxGetDataISRCallback callback,
void* context) {
furi_assert(furi_hal_infrared_state == InfraredStateIdle);
infrared_tim_tx.data_callback = callback;
infrared_tim_tx.data_context = context;
}
void furi_hal_infrared_async_tx_set_signal_sent_isr_callback(
FuriHalInfraredTxSignalSentISRCallback callback,
void* context) {
infrared_tim_tx.signal_sent_callback = callback;
infrared_tim_tx.signal_sent_context = context;
}