unleashed-firmware/firmware/targets/f6/furi-hal/furi-hal-bt.c
gornekich 3225f40870
[FL-1952] BLE bonding fix (#805)
* furi-hal-bt: add mutex guarding core2 state
* ble-glue: configure ble keys storage in SRAM2
* bt: add load and save ble keys in internal storage
* bt: improve work furi_hal_bt API
* bt: rework app_entry -> ble_glue
* bt: apply changes for f6 target
* desktop: remove furi check
* ble-glue: comment NVM in SRAM2 configuration
* FuriHal: fix flash controller state corruption, fix incorrect semaphore release, implement C1-C2 flash controller access according to spec. Gui: change logging level.
* Libs: better lfs integration with lfs_config.
* Ble: switch C2 NVM to RAM.
* FuriHalCrypto: ensure that core2 is alive before sending shci commands
* Ble: fix incorrect nvm buffer size

Co-authored-by: あく <alleteam@gmail.com>
2021-11-04 20:26:41 +03:00

273 lines
7.5 KiB
C

#include <furi-hal-bt.h>
#include <ble.h>
#include <stm32wbxx.h>
#include <shci.h>
#include <cmsis_os2.h>
#include <furi.h>
osMutexId_t furi_hal_bt_core2_mtx = NULL;
void furi_hal_bt_init() {
furi_hal_bt_core2_mtx = osMutexNew(NULL);
}
static bool furi_hal_bt_wait_startup() {
uint16_t counter = 0;
while (!(ble_glue_get_status() == BleGlueStatusStarted || ble_glue_get_status() == BleGlueStatusBleStackMissing)) {
osDelay(10);
counter++;
if (counter > 1000) {
return false;
}
}
return true;
}
bool furi_hal_bt_start_core2() {
furi_assert(furi_hal_bt_core2_mtx);
bool ret = false;
osMutexAcquire(furi_hal_bt_core2_mtx, osWaitForever);
// Explicitly tell that we are in charge of CLK48 domain
HAL_HSEM_FastTake(CFG_HW_CLK48_CONFIG_SEMID);
// Start Core2
ble_glue_init();
// Wait for Core2 start
ret = furi_hal_bt_wait_startup();
osMutexRelease(furi_hal_bt_core2_mtx);
return ret;
}
bool furi_hal_bt_init_app(BleEventCallback event_cb, void* context) {
furi_assert(event_cb);
return gap_init(event_cb, context);
}
void furi_hal_bt_start_advertising() {
if(gap_get_state() == GapStateIdle) {
gap_start_advertising();
}
}
void furi_hal_bt_stop_advertising() {
if(furi_hal_bt_is_active()) {
gap_stop_advertising();
while(furi_hal_bt_is_active()) {
osDelay(1);
}
}
}
void furi_hal_bt_set_data_event_callbacks(SerialSvcDataReceivedCallback on_received_cb, SerialSvcDataSentCallback on_sent_cb, void* context) {
serial_svc_set_callbacks(on_received_cb, on_sent_cb, context);
}
bool furi_hal_bt_tx(uint8_t* data, uint16_t size) {
if(size > FURI_HAL_BT_PACKET_SIZE_MAX) {
return false;
}
return serial_svc_update_tx(data, size);
}
bool furi_hal_bt_get_key_storage_buff(uint8_t** key_buff_addr, uint16_t* key_buff_size) {
bool ret = false;
BleGlueStatus status = ble_glue_get_status();
if(status == BleGlueStatusUninitialized || BleGlueStatusStarted) {
ble_app_get_key_storage_buff(key_buff_addr, key_buff_size);
ret = true;
}
return ret;
}
void furi_hal_bt_set_key_storage_change_callback(BleGlueKeyStorageChangedCallback callback, void* context) {
furi_assert(callback);
ble_glue_set_key_storage_changed_callback(callback, context);
}
void furi_hal_bt_nvm_sram_sem_acquire() {
while(HAL_HSEM_FastTake(CFG_HW_BLE_NVM_SRAM_SEMID) != HAL_OK) {
osDelay(1);
}
}
void furi_hal_bt_nvm_sram_sem_release() {
HAL_HSEM_Release(CFG_HW_BLE_NVM_SRAM_SEMID, 0);
}
void furi_hal_bt_dump_state(string_t buffer) {
BleGlueStatus status = ble_glue_get_status();
if (status == BleGlueStatusStarted) {
uint8_t HCI_Version;
uint16_t HCI_Revision;
uint8_t LMP_PAL_Version;
uint16_t Manufacturer_Name;
uint16_t LMP_PAL_Subversion;
tBleStatus ret = hci_read_local_version_information(
&HCI_Version, &HCI_Revision, &LMP_PAL_Version, &Manufacturer_Name, &LMP_PAL_Subversion
);
string_cat_printf(buffer,
"Ret: %d, HCI_Version: %d, HCI_Revision: %d, LMP_PAL_Version: %d, Manufacturer_Name: %d, LMP_PAL_Subversion: %d",
ret, HCI_Version, HCI_Revision, LMP_PAL_Version, Manufacturer_Name, LMP_PAL_Subversion
);
} else {
string_cat_printf(buffer, "BLE not ready");
}
}
bool furi_hal_bt_is_alive() {
BleGlueStatus status = ble_glue_get_status();
return (status == BleGlueStatusBleStackMissing) || (status == BleGlueStatusStarted);
}
bool furi_hal_bt_is_active() {
return gap_get_state() > GapStateIdle;
}
static void furi_hal_bt_lock_flash_core2(bool erase_flag) {
// Take flash controller ownership
while (HAL_HSEM_FastTake(CFG_HW_FLASH_SEMID) != HAL_OK) {
taskYIELD();
}
// Unlock flash operation
HAL_FLASH_Unlock();
// Erase activity notification
if(erase_flag) SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_ON);
while(true) {
// Wait till flash controller become usable
while(LL_FLASH_IsActiveFlag_OperationSuspended()) {
taskYIELD();
};
// Just a little more love
taskENTER_CRITICAL();
// Actually we already have mutex for it, but specification is specification
if (HAL_HSEM_IsSemTaken(CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID)) {
taskEXIT_CRITICAL();
continue;
}
// Take sempahopre and prevent core2 from anyting funky
if (HAL_HSEM_FastTake(CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID) != HAL_OK) {
taskEXIT_CRITICAL();
continue;
}
break;
}
}
void furi_hal_bt_lock_flash(bool erase_flag) {
// Acquire dangerous ops mutex
osMutexAcquire(furi_hal_bt_core2_mtx, osWaitForever);
// If Core2 is running use IPC locking
BleGlueStatus status = ble_glue_get_status();
if(status == BleGlueStatusStarted || status == BleGlueStatusBleStackMissing) {
furi_hal_bt_lock_flash_core2(erase_flag);
} else {
HAL_FLASH_Unlock();
}
}
static void furi_hal_bt_unlock_flash_core2(bool erase_flag) {
// Funky ops are ok at this point
HAL_HSEM_Release(CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID, 0);
// Task switching is ok
taskEXIT_CRITICAL();
// Doesn't make much sense, does it?
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY)) {
taskYIELD();
}
// Erase activity over, core2 can continue
if(erase_flag) SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_OFF);
// Lock flash controller
HAL_FLASH_Lock();
// Release flash controller ownership
HAL_HSEM_Release(CFG_HW_FLASH_SEMID, 0);
}
void furi_hal_bt_unlock_flash(bool erase_flag) {
// If Core2 is running use IPC locking
BleGlueStatus status = ble_glue_get_status();
if(status == BleGlueStatusStarted || status == BleGlueStatusBleStackMissing) {
furi_hal_bt_unlock_flash_core2(erase_flag);
} else {
HAL_FLASH_Lock();
}
// Release dangerous ops mutex
osMutexRelease(furi_hal_bt_core2_mtx);
}
void furi_hal_bt_start_tone_tx(uint8_t channel, uint8_t power) {
aci_hal_set_tx_power_level(0, power);
aci_hal_tone_start(channel, 0);
}
void furi_hal_bt_stop_tone_tx() {
aci_hal_tone_stop();
}
void furi_hal_bt_start_packet_tx(uint8_t channel, uint8_t pattern, uint8_t datarate) {
hci_le_enhanced_transmitter_test(channel, 0x25, pattern, datarate);
}
void furi_hal_bt_start_packet_rx(uint8_t channel, uint8_t datarate) {
hci_le_enhanced_receiver_test(channel, datarate, 0);
}
uint16_t furi_hal_bt_stop_packet_test() {
uint16_t num_of_packets = 0;
hci_le_test_end(&num_of_packets);
return num_of_packets;
}
void furi_hal_bt_start_rx(uint8_t channel) {
aci_hal_rx_start(channel);
}
float furi_hal_bt_get_rssi() {
float val;
uint8_t rssi_raw[3];
if (aci_hal_read_raw_rssi(rssi_raw) != BLE_STATUS_SUCCESS) {
return 0.0f;
}
// Some ST magic with rssi
uint8_t agc = rssi_raw[2] & 0xFF;
int rssi = (((int)rssi_raw[1] << 8) & 0xFF00) + (rssi_raw[0] & 0xFF);
if(rssi == 0 || agc > 11) {
val = -127.0;
} else {
val = agc * 6.0f - 127.0f;
while(rssi > 30) {
val += 6.0;
rssi >>=1;
}
val += (417 * rssi + 18080) >> 10;
}
return val;
}
uint32_t furi_hal_bt_get_transmitted_packets() {
uint32_t packets = 0;
aci_hal_le_tx_test_packet_number(&packets);
return packets;
}
void furi_hal_bt_stop_rx() {
aci_hal_rx_stop();
}