unleashed-firmware/applications/lf-rfid/lf-rfid.c
あく 5439e232cc
[FL-950] CC1101 Stage1, SPI Refactoring, Drivers layer (#386)
* API HAL SPI: refactoring, split into layers, prepare ST HAL separation. API HAL SubGhz: initialize on start. Drivers: add basic cc1101 driver. Update API usage. Debug: increase max debugger port speed. Remove subghz apps.
* CC1101: chip status handling. ApiHalSpi: increase SubGhz bus speed to 8mhz. F4: backport subghz initialization.
* Api Hal SubGhz: rx path and frequency. CC1101: frequency control.
* SubGhz Application: basic tests
* SubGhz app: tone and packet test. API HAL SUBGHZ: update configs, add missing bits and pieces.
2021-03-31 20:52:26 +03:00

416 lines
12 KiB
C

#include <furi.h>
#include <api-hal.h>
#include <gui/gui.h>
#include <stream_buffer.h>
typedef enum { EventTypeTick, EventTypeKey, EventTypeRx } EventType;
typedef struct {
uint8_t dummy;
} RxEvent;
typedef struct {
union {
InputEvent input;
RxEvent rx;
} value;
EventType type;
} AppEvent;
typedef struct {
uint32_t freq_khz;
bool on;
uint8_t customer_id;
uint32_t em_data;
bool dirty;
bool dirty_freq;
} State;
static void render_callback(Canvas* canvas, void* ctx) {
State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
canvas_clear(canvas);
canvas_set_color(canvas, ColorBlack);
canvas_set_font(canvas, FontPrimary);
canvas_draw_str(canvas, 2, 12, "LF RFID");
canvas_draw_str(canvas, 2, 24, state->on ? "Reading" : "Emulating");
char buf[30];
snprintf(buf, sizeof(buf), "%d kHz", (int)state->freq_khz);
canvas_draw_str(canvas, 2, 36, buf);
snprintf(buf, sizeof(buf), "%02d:%010ld", state->customer_id, state->em_data);
canvas_draw_str(canvas, 2, 45, buf);
release_mutex((ValueMutex*)ctx, state);
}
static void input_callback(InputEvent* input_event, void* ctx) {
osMessageQueueId_t event_queue = ctx;
AppEvent event;
event.type = EventTypeKey;
event.value.input = *input_event;
osMessageQueuePut(event_queue, &event, 0, 0);
}
extern TIM_HandleTypeDef TIM_C;
void em4100_emulation(uint8_t* data, GpioPin* pin);
void prepare_data(uint32_t ID, uint32_t VENDOR, uint8_t* data);
GpioPin debug_0 = {.pin = GPIO_PIN_2, .port = GPIOB};
GpioPin debug_1 = {.pin = GPIO_PIN_3, .port = GPIOC};
extern COMP_HandleTypeDef hcomp1;
typedef struct {
osMessageQueueId_t event_queue;
uint32_t prev_dwt;
int8_t symbol;
bool center;
size_t symbol_cnt;
StreamBufferHandle_t stream_buffer;
uint8_t* int_buffer;
} ComparatorCtx;
void init_comp_ctx(ComparatorCtx* ctx) {
ctx->prev_dwt = 0;
ctx->symbol = -1; // init state
ctx->center = false;
ctx->symbol_cnt = 0;
xStreamBufferReset(ctx->stream_buffer);
for(size_t i = 0; i < 64; i++) {
ctx->int_buffer[i] = 0;
}
}
void comparator_trigger_callback(void* hcomp, void* comp_ctx) {
ComparatorCtx* ctx = (ComparatorCtx*)comp_ctx;
uint32_t dt = (DWT->CYCCNT - ctx->prev_dwt) / (SystemCoreClock / 1000000.0f);
ctx->prev_dwt = DWT->CYCCNT;
if(dt < 150) return; // supress noise
// wait message will be consumed
if(xStreamBufferBytesAvailable(ctx->stream_buffer) == 64) return;
gpio_write(&debug_0, true);
// TOOD F4 and F5 differ
bool rx_value = get_rfid_in_level();
if(dt > 384) {
// change symbol 0->1 or 1->0
ctx->symbol = rx_value;
ctx->center = true;
} else {
// same symbol as prev or center
ctx->center = !ctx->center;
}
/*
gpio_write(&debug_1, true);
delay_us(center ? 10 : 30);
gpio_write(&debug_1, false);
*/
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
if(ctx->center && ctx->symbol != -1) {
/*
gpio_write(&debug_0, true);
delay_us(symbol ? 10 : 30);
gpio_write(&debug_0, false);
*/
ctx->int_buffer[ctx->symbol_cnt] = ctx->symbol;
ctx->symbol_cnt++;
}
// check preamble
if(ctx->symbol_cnt <= 9 && ctx->symbol == 0) {
ctx->symbol_cnt = 0;
ctx->symbol = -1;
}
// check stop bit
if(ctx->symbol_cnt == 64 && ctx->symbol == 1) {
ctx->symbol_cnt = 0;
ctx->symbol = -1;
}
// TODO
// write only 9..64 symbols directly to streambuffer
if(ctx->symbol_cnt == 64) {
if(xStreamBufferSendFromISR(
ctx->stream_buffer, ctx->int_buffer, 64, &xHigherPriorityTaskWoken) == 64) {
AppEvent event;
event.type = EventTypeRx;
osMessageQueuePut(ctx->event_queue, &event, 0, 0);
}
ctx->symbol_cnt = 0;
}
gpio_write(&debug_0, false);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
const uint8_t ROW_SIZE = 4;
const uint8_t LINE_SIZE = 10;
static bool even_check(uint8_t* buf) {
uint8_t col_parity_sum[ROW_SIZE];
for(uint8_t col = 0; col < ROW_SIZE; col++) {
col_parity_sum[col] = 0;
}
// line parity
for(uint8_t line = 0; line < LINE_SIZE; line++) {
printf("%d: ", line);
uint8_t parity_sum = 0;
for(uint8_t col = 0; col < ROW_SIZE; col++) {
parity_sum += buf[line * (ROW_SIZE + 1) + col];
col_parity_sum[col] += buf[line * (ROW_SIZE + 1) + col];
printf("%d ", buf[line * (ROW_SIZE + 1) + col]);
}
if((1 & parity_sum) != buf[line * (ROW_SIZE + 1) + ROW_SIZE]) {
printf(
"line parity fail at %d (%d : %d)\n",
line,
parity_sum,
buf[line * (ROW_SIZE + 1) + ROW_SIZE]);
return false;
}
printf("\r\n");
}
for(uint8_t col = 0; col < ROW_SIZE; col++) {
if((1 & col_parity_sum[col]) != buf[LINE_SIZE * (ROW_SIZE + 1) + col]) {
printf(
"col parity fail at %d (%d : %d)\n",
col,
col_parity_sum[col],
buf[LINE_SIZE * (ROW_SIZE + 1) + col]);
return false;
}
}
return true;
}
static void extract_data(uint8_t* buf, uint8_t* customer, uint32_t* em_data) {
uint32_t data = 0;
uint8_t offset = 0;
printf("customer: ");
for(uint8_t line = 0; line < 2; line++) {
for(uint8_t col = 0; col < ROW_SIZE; col++) {
uint32_t bit = buf[line * (ROW_SIZE + 1) + col];
data |= bit << (7 - offset);
printf("%ld ", bit);
offset++;
}
}
printf("\r\n");
*customer = data;
data = 0;
offset = 0;
printf("data: ");
for(uint8_t line = 2; line < LINE_SIZE; line++) {
for(uint8_t col = 0; col < ROW_SIZE; col++) {
uint32_t bit = buf[line * (ROW_SIZE + 1) + col];
data |= bit << (31 - offset);
printf("%ld ", bit);
offset++;
}
}
printf("\r\n");
*em_data = data;
}
int32_t lf_rfid_workaround(void* p) {
osMessageQueueId_t event_queue = osMessageQueueNew(2, sizeof(AppEvent), NULL);
// create pin
GpioPin pull_pin = {.pin = RFID_PULL_Pin, .port = RFID_PULL_GPIO_Port};
// TODO open record
GpioPin* pull_pin_record = &pull_pin;
gpio_init(pull_pin_record, GpioModeOutputPushPull);
gpio_init(&debug_0, GpioModeOutputPushPull);
gpio_init(&debug_1, GpioModeOutputPushPull);
// pulldown iBtn pin to prevent interference from ibutton
gpio_init((GpioPin*)&ibutton_gpio, GpioModeOutputOpenDrain);
gpio_write((GpioPin*)&ibutton_gpio, false);
// init ctx
ComparatorCtx comp_ctx;
// internal buffer
uint8_t int_bufer[64];
comp_ctx.stream_buffer = xStreamBufferCreate(64, 64);
comp_ctx.int_buffer = int_bufer;
comp_ctx.event_queue = event_queue;
init_comp_ctx(&comp_ctx);
if(comp_ctx.stream_buffer == NULL) {
printf("cannot create stream buffer\r\n");
return 255;
}
// start comp
HAL_COMP_Start(&hcomp1);
uint8_t raw_data[64];
for(size_t i = 0; i < 64; i++) {
raw_data[i] = 0;
}
State _state;
_state.freq_khz = 125;
_state.on = false;
_state.customer_id = 00;
_state.em_data = 4378151;
_state.dirty = true;
_state.dirty_freq = true;
ValueMutex state_mutex;
if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
printf("cannot create mutex\r\n");
return 255;
}
ViewPort* view_port = view_port_alloc();
view_port_draw_callback_set(view_port, render_callback, &state_mutex);
view_port_input_callback_set(view_port, input_callback, event_queue);
// Open GUI and register view_port
Gui* gui = furi_record_open("gui");
gui_add_view_port(gui, view_port, GuiLayerFullscreen);
AppEvent event;
while(1) {
osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 1024 / 8);
if(event.type == EventTypeRx && event_status == osOK) {
size_t received = xStreamBufferReceive(comp_ctx.stream_buffer, raw_data, 64, 0);
printf("received: %d\r\n", received);
if(received == 64) {
if(even_check(&raw_data[9])) {
State* state = (State*)acquire_mutex_block(&state_mutex);
extract_data(&raw_data[9], &state->customer_id, &state->em_data);
printf("customer: %02d, data: %010lu\n", state->customer_id, state->em_data);
release_mutex(&state_mutex, state);
view_port_update(view_port);
api_hal_light_set(LightGreen, 0xFF);
osDelay(50);
api_hal_light_set(LightGreen, 0x00);
}
}
} else {
State* state = (State*)acquire_mutex_block(&state_mutex);
if(event_status == osOK) {
if(event.type == EventTypeKey) {
// press events
if(event.value.input.type == InputTypePress &&
event.value.input.key == InputKeyBack) {
hal_pwmn_stop(&TIM_C, TIM_CHANNEL_1); // TODO: move to furiac_onexit
api_interrupt_remove(
comparator_trigger_callback, InterruptTypeComparatorTrigger);
gpio_init(pull_pin_record, GpioModeInput);
gpio_init((GpioPin*)&ibutton_gpio, GpioModeInput);
// TODO remove all view_ports create by app
view_port_enabled_set(view_port, false);
return 255;
}
if(event.value.input.type == InputTypePress &&
event.value.input.key == InputKeyUp) {
state->dirty_freq = true;
state->freq_khz += 10;
}
if(event.value.input.type == InputTypePress &&
event.value.input.key == InputKeyDown) {
state->dirty_freq = true;
state->freq_khz -= 10;
}
if(event.value.input.type == InputTypePress &&
event.value.input.key == InputKeyLeft) {
}
if(event.value.input.type == InputTypePress &&
event.value.input.key == InputKeyRight) {
}
if(event.value.input.type == InputTypePress &&
event.value.input.key == InputKeyOk) {
state->dirty = true;
state->on = !state->on;
}
}
} else {
// event timeout
}
if(state->dirty) {
if(state->on) {
gpio_write(pull_pin_record, false);
init_comp_ctx(&comp_ctx);
api_interrupt_add(
comparator_trigger_callback, InterruptTypeComparatorTrigger, &comp_ctx);
} else {
prepare_data(state->em_data, state->customer_id, raw_data);
api_interrupt_remove(
comparator_trigger_callback, InterruptTypeComparatorTrigger);
}
state->dirty_freq = true; // config new PWM next
state->dirty = false;
}
if(state->dirty_freq) {
hal_pwmn_set(
state->on ? 0.5 : 0.0, (float)(state->freq_khz * 1000), &LFRFID_TIM, LFRFID_CH);
state->dirty_freq = false;
}
if(!state->on) {
em4100_emulation(raw_data, pull_pin_record);
}
release_mutex(&state_mutex, state);
view_port_update(view_port);
}
}
return 0;
}