mirror of
https://github.com/DarkFlippers/unleashed-firmware
synced 2025-01-12 20:58:49 +00:00
206 lines
7.5 KiB
C
206 lines
7.5 KiB
C
/* Copyright (C) 2022-2023 Salvatore Sanfilippo -- All Rights Reserved
|
|
* See the LICENSE file for information about the license. */
|
|
|
|
#include "app.h"
|
|
#include "custom_presets.h"
|
|
|
|
#include <flipper_format/flipper_format_i.h>
|
|
#include <furi_hal_rtc.h>
|
|
#include <furi_hal_spi.h>
|
|
#include <furi_hal_interrupt.h>
|
|
|
|
void raw_sampling_timer_start(ProtoViewApp* app);
|
|
void raw_sampling_timer_stop(ProtoViewApp* app);
|
|
|
|
ProtoViewModulation ProtoViewModulations[] = {
|
|
{"OOK 650Khz", "FuriHalSubGhzPresetOok650Async", FuriHalSubGhzPresetOok650Async, NULL, 30},
|
|
{"OOK 270Khz", "FuriHalSubGhzPresetOok270Async", FuriHalSubGhzPresetOok270Async, NULL, 30},
|
|
{"2FSK 2.38Khz",
|
|
"FuriHalSubGhzPreset2FSKDev238Async",
|
|
FuriHalSubGhzPreset2FSKDev238Async,
|
|
NULL,
|
|
30},
|
|
{"2FSK 47.6Khz",
|
|
"FuriHalSubGhzPreset2FSKDev476Async",
|
|
FuriHalSubGhzPreset2FSKDev476Async,
|
|
NULL,
|
|
30},
|
|
{"TPMS 1 (FSK)", NULL, 0, (uint8_t*)protoview_subghz_tpms1_fsk_async_regs, 30},
|
|
{"TPMS 2 (OOK)", NULL, 0, (uint8_t*)protoview_subghz_tpms2_ook_async_regs, 30},
|
|
{"TPMS 3 (GFSK)", NULL, 0, (uint8_t*)protoview_subghz_tpms3_gfsk_async_regs, 30},
|
|
{"OOK 40kBaud", NULL, 0, (uint8_t*)protoview_subghz_40k_ook_async_regs, 15},
|
|
{"FSK 40kBaud", NULL, 0, (uint8_t*)protoview_subghz_40k_fsk_async_regs, 15},
|
|
{NULL, NULL, 0, NULL, 0} /* End of list sentinel. */
|
|
};
|
|
|
|
/* Called after the application initialization in order to setup the
|
|
* subghz system and put it into idle state. */
|
|
void radio_begin(ProtoViewApp* app) {
|
|
furi_assert(app);
|
|
subghz_devices_reset(app->radio_device);
|
|
subghz_devices_idle(app->radio_device);
|
|
|
|
/* The CC1101 preset can be either one of the standard presets, if
|
|
* the modulation "custom" field is NULL, or a custom preset we
|
|
* defined in custom_presets.h. */
|
|
if(ProtoViewModulations[app->modulation].custom == NULL) {
|
|
subghz_devices_load_preset(
|
|
app->radio_device, ProtoViewModulations[app->modulation].preset, NULL);
|
|
} else {
|
|
subghz_devices_load_preset(
|
|
app->radio_device,
|
|
FuriHalSubGhzPresetCustom,
|
|
ProtoViewModulations[app->modulation].custom);
|
|
}
|
|
furi_hal_gpio_init(
|
|
subghz_devices_get_data_gpio(app->radio_device), GpioModeInput, GpioPullNo, GpioSpeedLow);
|
|
app->txrx->txrx_state = TxRxStateIDLE;
|
|
}
|
|
|
|
/* ================================= Reception ============================== */
|
|
|
|
/* We avoid the subghz provided abstractions and put the data in our
|
|
* simple abstraction: the RawSamples circular buffer. */
|
|
void protoview_rx_callback(bool level, uint32_t duration, void* context) {
|
|
UNUSED(context);
|
|
/* Add data to the circular buffer. */
|
|
raw_samples_add(RawSamples, level, duration);
|
|
// FURI_LOG_E(TAG, "FEED: %d %d", (int)level, (int)duration);
|
|
return;
|
|
}
|
|
|
|
/* Setup the CC1101 to start receiving using a background worker. */
|
|
uint32_t radio_rx(ProtoViewApp* app) {
|
|
furi_assert(app);
|
|
|
|
if(!subghz_devices_is_frequency_valid(app->radio_device, app->frequency)) {
|
|
furi_crash(TAG " Incorrect RX frequency.");
|
|
}
|
|
|
|
if(app->txrx->txrx_state == TxRxStateRx) return app->frequency;
|
|
|
|
subghz_devices_idle(app->radio_device); /* Put it into idle state in case it is sleeping. */
|
|
uint32_t value = subghz_devices_set_frequency(app->radio_device, app->frequency);
|
|
FURI_LOG_E(TAG, "Switched to frequency: %lu", value);
|
|
|
|
subghz_devices_flush_rx(app->radio_device);
|
|
subghz_devices_set_rx(app->radio_device);
|
|
|
|
if(!app->txrx->debug_timer_sampling) {
|
|
subghz_devices_start_async_rx(app->radio_device, protoview_rx_callback, NULL);
|
|
} else {
|
|
furi_hal_gpio_init(
|
|
subghz_devices_get_data_gpio(app->radio_device),
|
|
GpioModeInput,
|
|
GpioPullNo,
|
|
GpioSpeedLow);
|
|
raw_sampling_worker_start(app);
|
|
}
|
|
app->txrx->txrx_state = TxRxStateRx;
|
|
return value;
|
|
}
|
|
|
|
/* Stop receiving (if active) and put the radio on idle state. */
|
|
void radio_rx_end(ProtoViewApp* app) {
|
|
furi_assert(app);
|
|
|
|
if(app->txrx->txrx_state == TxRxStateRx) {
|
|
if(!app->txrx->debug_timer_sampling) {
|
|
subghz_devices_stop_async_rx(app->radio_device);
|
|
} else {
|
|
raw_sampling_worker_stop(app);
|
|
}
|
|
}
|
|
subghz_devices_idle(app->radio_device);
|
|
app->txrx->txrx_state = TxRxStateIDLE;
|
|
}
|
|
|
|
/* Put radio on sleep. */
|
|
void radio_sleep(ProtoViewApp* app) {
|
|
furi_assert(app);
|
|
if(app->txrx->txrx_state == TxRxStateRx) {
|
|
/* Stop the asynchronous receiving system before putting the
|
|
* chip into sleep. */
|
|
radio_rx_end(app);
|
|
}
|
|
subghz_devices_sleep(app->radio_device);
|
|
app->txrx->txrx_state = TxRxStateSleep;
|
|
}
|
|
|
|
/* =============================== Transmission ============================= */
|
|
|
|
/* This function suspends the current RX state, switches to TX mode,
|
|
* transmits the signal provided by the callback data_feeder, and later
|
|
* restores the RX state if there was one. */
|
|
void radio_tx_signal(ProtoViewApp* app, FuriHalSubGhzAsyncTxCallback data_feeder, void* ctx) {
|
|
TxRxState oldstate = app->txrx->txrx_state;
|
|
|
|
if(oldstate == TxRxStateRx) radio_rx_end(app);
|
|
radio_begin(app);
|
|
|
|
subghz_devices_idle(app->radio_device);
|
|
uint32_t value = subghz_devices_set_frequency(app->radio_device, app->frequency);
|
|
FURI_LOG_E(TAG, "Switched to frequency: %lu", value);
|
|
|
|
subghz_devices_start_async_tx(app->radio_device, data_feeder, ctx);
|
|
while(!subghz_devices_is_async_complete_tx(app->radio_device)) furi_delay_ms(10);
|
|
subghz_devices_stop_async_tx(app->radio_device);
|
|
subghz_devices_idle(app->radio_device);
|
|
|
|
radio_begin(app);
|
|
if(oldstate == TxRxStateRx) radio_rx(app);
|
|
}
|
|
|
|
/* ============================= Raw sampling mode =============================
|
|
* This is a special mode that uses a high frequency timer to sample the
|
|
* CC1101 pin directly. It's useful for debugging purposes when we want
|
|
* to get the raw data from the chip and completely bypass the subghz
|
|
* Flipper system.
|
|
* ===========================================================================*/
|
|
|
|
void protoview_timer_isr(void* ctx) {
|
|
ProtoViewApp* app = ctx;
|
|
|
|
bool level = furi_hal_gpio_read(subghz_devices_get_data_gpio(app->radio_device));
|
|
if(app->txrx->last_g0_value != level) {
|
|
uint32_t now = DWT->CYCCNT;
|
|
uint32_t dur = now - app->txrx->last_g0_change_time;
|
|
dur /= furi_hal_cortex_instructions_per_microsecond();
|
|
if(dur > 15000) dur = 15000;
|
|
raw_samples_add(RawSamples, app->txrx->last_g0_value, dur);
|
|
app->txrx->last_g0_value = level;
|
|
app->txrx->last_g0_change_time = now;
|
|
}
|
|
LL_TIM_ClearFlag_UPDATE(TIM2);
|
|
}
|
|
|
|
void raw_sampling_worker_start(ProtoViewApp* app) {
|
|
UNUSED(app);
|
|
|
|
furi_hal_bus_enable(FuriHalBusTIM2);
|
|
|
|
LL_TIM_InitTypeDef tim_init = {
|
|
.Prescaler = 63, /* CPU frequency is ~64Mhz. */
|
|
.CounterMode = LL_TIM_COUNTERMODE_UP,
|
|
.Autoreload = 5, /* Sample every 5 us */
|
|
};
|
|
|
|
LL_TIM_Init(TIM2, &tim_init);
|
|
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
|
|
LL_TIM_DisableCounter(TIM2);
|
|
LL_TIM_SetCounter(TIM2, 0);
|
|
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, protoview_timer_isr, app);
|
|
LL_TIM_EnableIT_UPDATE(TIM2);
|
|
LL_TIM_EnableCounter(TIM2);
|
|
FURI_LOG_E(TAG, "Timer enabled");
|
|
}
|
|
|
|
void raw_sampling_worker_stop(ProtoViewApp* app) {
|
|
UNUSED(app);
|
|
FURI_CRITICAL_ENTER();
|
|
LL_TIM_DisableCounter(TIM2);
|
|
LL_TIM_DisableIT_UPDATE(TIM2);
|
|
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL);
|
|
furi_hal_bus_disable(FuriHalBusTIM2);
|
|
FURI_CRITICAL_EXIT();
|
|
}
|