unleashed-firmware/lib/subghz/protocols/subghz_protocol_princeton.c
SG 274c12fc56
[FL-2274] Inventing streams and moving FFF to them (#981)
* Streams: string stream
* String stream: updated insert/delete api
* Streams: generic stream interface and string stream implementation
* Streams: helpers for insert and delete_and_insert
* FFF: now compatible with streams
* MinUnit: introduced tests with arguments
* FFF: stream access violation
* Streams: copy data between streams
* Streams: file stream
* FFF: documentation
* FFStream: documentation
* FFF: alloc as file
* MinUnit: support for nested tests
* Streams: changed delete_and_insert, now it returns success flag. Added ability dump stream inner parameters and data to cout.
* FFF: simplified file open function
* Streams: unit tests
* FFF: tests
* Streams: declare cache_size constant as define, to allow variable modified arrays
* FFF: lib moved to a separate folder
* iButton: new FFF
* RFID: new FFF
* Animations: new FFF
* IR: new FFF
* NFC: new FFF
* Flipper file format: delete lib
* U2F: new FFF
* Subghz: new FFF and streams
* Streams: read line
* Streams: split
* FuriCore: implement memset with extra asserts
* FuriCore: implement extra heap asserts without inventing memset
* Scene manager: protected access to the scene id stack with a size check
* NFC worker: dirty fix for issue where hal_nfc was busy on app start
* Furi: update allocator to erase memory on allocation. Replace furi_alloc with malloc.
* FuriCore: cleanup memmgr code.
* Furi HAL: furi_hal_init is split into critical and non-critical parts. The critical part is currently clock and console.
* Memmgr: added ability to track allocations and deallocations through console.
* FFStream: some speedup
* Streams, FF: minor fixes
* Tests: restore
* File stream: a slightly more thread-safe version of file_stream_delete_and_insert

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2022-02-18 22:53:46 +03:00

368 lines
13 KiB
C

#include "subghz_protocol_princeton.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
#define SUBGHZ_PT_SHORT 300
#define SUBGHZ_PT_LONG (SUBGHZ_PT_SHORT * 3)
#define SUBGHZ_PT_GUARD (SUBGHZ_PT_SHORT * 30)
#define SUBGHZ_PT_COUNT_KEY_433 9
#define SUBGHZ_PT_TIMEOUT_433 900
#define SUBGHZ_PT_COUNT_KEY_868 9
#define SUBGHZ_PT_TIMEOUT_868 14000
#define TAG "SubghzPrinceton"
struct SubGhzEncoderPrinceton {
uint32_t key;
uint16_t te;
size_t repeat;
size_t front;
size_t count_key;
size_t count_key_package;
uint32_t time_high;
uint32_t time_low;
uint32_t timeout;
uint32_t time_stop;
};
typedef enum {
PrincetonDecoderStepReset = 0,
PrincetonDecoderStepSaveDuration,
PrincetonDecoderStepCheckDuration,
} PrincetonDecoderStep;
SubGhzEncoderPrinceton* subghz_encoder_princeton_alloc() {
SubGhzEncoderPrinceton* instance = malloc(sizeof(SubGhzEncoderPrinceton));
return instance;
}
void subghz_encoder_princeton_free(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
void subghz_encoder_princeton_set_te(SubGhzEncoderPrinceton* instance, void* decoder) {
SubGhzDecoderPrinceton* pricenton = decoder;
if((pricenton->te) != 0) {
instance->te = pricenton->te;
} else {
instance->te = SUBGHZ_PT_SHORT;
}
}
void subghz_encoder_princeton_stop(SubGhzEncoderPrinceton* instance, uint32_t time_stop) {
instance->time_stop = time_stop;
}
void subghz_encoder_princeton_set(
SubGhzEncoderPrinceton* instance,
uint32_t key,
size_t repeat,
uint32_t frequency) {
furi_assert(instance);
instance->te = SUBGHZ_PT_SHORT;
instance->key = key;
instance->repeat = repeat + 1;
instance->front = 48;
instance->time_high = 0;
instance->time_low = 0;
if(frequency < 700000000) {
instance->count_key_package = SUBGHZ_PT_COUNT_KEY_433;
instance->timeout = SUBGHZ_PT_TIMEOUT_433;
} else {
instance->count_key_package = SUBGHZ_PT_COUNT_KEY_868;
instance->timeout = SUBGHZ_PT_TIMEOUT_868;
}
instance->count_key = instance->count_key_package + 3;
if((millis() - instance->time_stop) < instance->timeout) {
instance->time_stop = (instance->timeout - (millis() - instance->time_stop)) * 1000;
} else {
instance->time_stop = 0;
}
}
size_t subghz_encoder_princeton_get_repeat_left(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
return instance->repeat;
}
void subghz_encoder_princeton_print_log(void* context) {
SubGhzEncoderPrinceton* instance = context;
float duty_cycle =
((float)instance->time_high / (instance->time_high + instance->time_low)) * 100;
FURI_LOG_I(
TAG "Encoder",
"Radio tx_time=%dus ON=%dus, OFF=%dus, DutyCycle=%d,%d%%",
instance->time_high + instance->time_low,
instance->time_high,
instance->time_low,
(uint32_t)duty_cycle,
(uint32_t)((duty_cycle - (uint32_t)duty_cycle) * 100));
}
LevelDuration subghz_encoder_princeton_yield(void* context) {
SubGhzEncoderPrinceton* instance = context;
if(instance->repeat == 0) {
subghz_encoder_princeton_print_log(instance);
return level_duration_reset();
}
size_t bit = instance->front / 2;
bool level = !(instance->front % 2);
LevelDuration ret;
if(bit < 24) {
uint8_t byte = bit / 8;
uint8_t bit_in_byte = bit % 8;
bool value = (((uint8_t*)&instance->key)[2 - byte] >> (7 - bit_in_byte)) & 1;
if(value) {
ret = level_duration_make(level, level ? instance->te * 3 : instance->te);
if(level)
instance->time_high += instance->te * 3;
else
instance->time_low += instance->te;
} else {
ret = level_duration_make(level, level ? instance->te : instance->te * 3);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->te * 3;
}
} else {
if(instance->time_stop) {
ret = level_duration_make(level, level ? instance->te : instance->time_stop);
if(level)
instance->time_high += instance->te;
else {
instance->time_low += instance->time_stop;
instance->time_stop = 0;
instance->front = 47;
}
} else {
if(--instance->count_key != 0) {
ret = level_duration_make(level, level ? instance->te : instance->te * 30);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->te * 30;
} else {
instance->count_key = instance->count_key_package + 2;
instance->front = 48;
ret = level_duration_make(level, level ? instance->te : instance->timeout * 1000);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->timeout * 1000;
}
}
}
instance->front++;
if(instance->front == 50) {
instance->repeat--;
instance->front = 0;
}
return ret;
}
SubGhzDecoderPrinceton* subghz_decoder_princeton_alloc(void) {
SubGhzDecoderPrinceton* instance = malloc(sizeof(SubGhzDecoderPrinceton));
instance->te = SUBGHZ_PT_SHORT;
instance->common.name = "Princeton";
instance->common.code_min_count_bit_for_found = 24;
instance->common.te_short = 400; //150;
instance->common.te_long = 1200; //450;
instance->common.te_delta = 250; //50;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_decoder_princeton_to_str;
instance->common.to_save_file =
(SubGhzProtocolCommonSaveFile)subghz_decoder_princeton_to_save_file;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_decoder_princeton_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_princeton_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_princeton_send_key;
return instance;
}
void subghz_decoder_princeton_free(SubGhzDecoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
uint16_t subghz_protocol_princeton_get_te(void* context) {
SubGhzDecoderPrinceton* instance = context;
return instance->te;
}
bool subghz_protocol_princeton_send_key(
SubGhzDecoderPrinceton* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te);
} else {
//send bit 0
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 3);
}
}
//Send Stop bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
//Send PT_GUARD
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 30);
return true;
}
void subghz_decoder_princeton_reset(SubGhzDecoderPrinceton* instance) {
instance->common.parser_step = PrincetonDecoderStepReset;
}
void subghz_decoder_princeton_parse(
SubGhzDecoderPrinceton* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case PrincetonDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 36) <
instance->common.te_delta * 36)) {
//Found Preambula
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->te = 0;
}
break;
case PrincetonDecoderStepSaveDuration:
//save duration
if(level) {
instance->common.te_last = duration;
instance->te += duration;
instance->common.parser_step = PrincetonDecoderStepCheckDuration;
}
break;
case PrincetonDecoderStepCheckDuration:
if(!level) {
if(duration >= (instance->common.te_short * 10 + instance->common.te_delta)) {
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
if(instance->common.code_count_bit ==
instance->common.code_min_count_bit_for_found) {
instance->te /= (instance->common.code_count_bit * 4 + 1);
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
instance->common.serial = instance->common.code_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_found & 0x00000F;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->te = 0;
break;
}
instance->te += duration;
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) <
instance->common.te_delta * 3)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta * 3) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
} else {
instance->common.parser_step = PrincetonDecoderStepReset;
}
} else {
instance->common.parser_step = PrincetonDecoderStepReset;
}
break;
}
}
void subghz_decoder_princeton_to_str(SubGhzDecoderPrinceton* instance, string_t output) {
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n"
"Sn:0x%05lX BTN:%02X\r\n"
"Te:%dus\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_lo,
code_found_reverse_lo,
instance->common.serial,
instance->common.btn,
instance->te);
}
bool subghz_decoder_princeton_to_save_file(
SubGhzDecoderPrinceton* instance,
FlipperFormat* flipper_format) {
bool res =
subghz_protocol_common_to_save_file((SubGhzProtocolCommon*)instance, flipper_format);
if(res) {
res = flipper_format_write_uint32(flipper_format, "TE", &instance->te, 1);
if(!res) FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Te");
}
return res;
}
bool subghz_decoder_princeton_to_load_protocol_from_file(
FlipperFormat* flipper_format,
SubGhzDecoderPrinceton* instance,
const char* file_path) {
bool loaded = subghz_protocol_common_to_load_protocol_from_file(
(SubGhzProtocolCommon*)instance, flipper_format);
if(loaded) {
loaded = flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1);
if(!loaded) FURI_LOG_E(SUBGHZ_PARSER_TAG, "Missing TE");
}
return loaded;
}
void subghz_decoder_princeton_to_load_protocol(SubGhzDecoderPrinceton* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
instance->te = data->param1;
instance->common.serial = instance->common.code_last_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F;
}