unleashed-firmware/lib/lfrfid/protocols/protocol_h10301.c
Georgii Surkov 64bd2f9c84
[FL-3677, FL-3798] RFID Improvements (#3524)
* Update saved_info and read_success scenes
* Update EM4100 rendering
* Update HIDExt rendering
* Update Gallagher rendering
* Update HidProx rendering
* Update IOProx rendering
* Update H10301 rendering
* Update PAC/Stanley rendering
* Add strcasecmp() to API, better manufacturer/name handling
* Update Viking rendering
* Update FDX-A rendering
* Update Pyramid rendering
* Update Indala26 rendering
* Update Idteck rendering
* Update Keri rendering
* Update Nexwatch rendering
* Update Jablotron rendering
* Update Paradox rendering
* Truncate long Hex string on scene_read_suceess
* Fix formatting
* Update AWID rendering
* Update FDX-B rendering
* Tweak string formatting in various screens
* More read_success view tweaks
* Fix formatting
* Fix Pyramid brief rendering
* Reset saved key menu when going back
* Reset other menus on back where applicable
* Update confirmation scenes
* Update emulation scene
* Update delete scene
* Update raw read info screen
* Update raw read scene, fix crash
* Update raw read success scene
* Update write scene
* Always return to SceneSelectKey after saving
* Update SceneWriteSuccess and SceneDeleteSuccess
* Replace closing parens with dots
* FL-3798: Fix special formatting in text_box
* Simplify SceneReadSuccess
* Fix crash when having a trailing newline in text_box
* Bump API symbols version
* Make PVS happy
* Format sources

Co-authored-by: あく <alleteam@gmail.com>
2024-03-29 12:32:43 +09:00

390 lines
12 KiB
C

#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <lfrfid/tools/fsk_demod.h>
#include <lfrfid/tools/fsk_osc.h>
#include "lfrfid_protocols.h"
#define JITTER_TIME (20)
#define MIN_TIME (64 - JITTER_TIME)
#define MAX_TIME (80 + JITTER_TIME)
#define H10301_DECODED_DATA_SIZE (3)
#define H10301_ENCODED_DATA_SIZE_U32 (3)
#define H10301_ENCODED_DATA_SIZE (sizeof(uint32_t) * H10301_ENCODED_DATA_SIZE_U32)
#define H10301_BIT_SIZE (sizeof(uint32_t) * 8)
#define H10301_BIT_MAX_SIZE (H10301_BIT_SIZE * H10301_DECODED_DATA_SIZE)
typedef struct {
FSKDemod* fsk_demod;
} ProtocolH10301Decoder;
typedef struct {
FSKOsc* fsk_osc;
uint8_t encoded_index;
uint32_t pulse;
} ProtocolH10301Encoder;
typedef struct {
ProtocolH10301Decoder decoder;
ProtocolH10301Encoder encoder;
uint32_t encoded_data[H10301_ENCODED_DATA_SIZE_U32];
uint8_t data[H10301_DECODED_DATA_SIZE];
} ProtocolH10301;
ProtocolH10301* protocol_h10301_alloc(void) {
ProtocolH10301* protocol = malloc(sizeof(ProtocolH10301));
protocol->decoder.fsk_demod = fsk_demod_alloc(MIN_TIME, 6, MAX_TIME, 5);
protocol->encoder.fsk_osc = fsk_osc_alloc(8, 10, 50);
return protocol;
};
void protocol_h10301_free(ProtocolH10301* protocol) {
fsk_demod_free(protocol->decoder.fsk_demod);
fsk_osc_free(protocol->encoder.fsk_osc);
free(protocol);
};
uint8_t* protocol_h10301_get_data(ProtocolH10301* protocol) {
return protocol->data;
};
void protocol_h10301_decoder_start(ProtocolH10301* protocol) {
memset(protocol->encoded_data, 0, sizeof(uint32_t) * 3);
};
static void protocol_h10301_decoder_store_data(ProtocolH10301* protocol, bool data) {
protocol->encoded_data[0] = (protocol->encoded_data[0] << 1) |
((protocol->encoded_data[1] >> 31) & 1);
protocol->encoded_data[1] = (protocol->encoded_data[1] << 1) |
((protocol->encoded_data[2] >> 31) & 1);
protocol->encoded_data[2] = (protocol->encoded_data[2] << 1) | data;
}
static bool protocol_h10301_can_be_decoded(const uint32_t* card_data) {
const uint8_t* encoded_data = (const uint8_t*)card_data;
// packet preamble
// raw data
if(*(encoded_data + 3) != 0x1D) {
return false;
}
// encoded company/oem
// coded with 01 = 0, 10 = 1 transitions
// stored in word 0
if((*card_data >> 10 & 0x3FFF) != 0x1556) {
return false;
}
// encoded format/length
// coded with 01 = 0, 10 = 1 transitions
// stored in word 0 and word 1
if((((*card_data & 0x3FF) << 12) | ((*(card_data + 1) >> 20) & 0xFFF)) != 0x155556) {
return false;
}
// data decoding
uint32_t result = 0;
// decode from word 1
// coded with 01 = 0, 10 = 1 transitions
for(int8_t i = 9; i >= 0; i--) {
switch((*(card_data + 1) >> (2 * i)) & 0b11) {
case 0b01:
result = (result << 1) | 0;
break;
case 0b10:
result = (result << 1) | 1;
break;
default:
return false;
break;
}
}
// decode from word 2
// coded with 01 = 0, 10 = 1 transitions
for(int8_t i = 15; i >= 0; i--) {
switch((*(card_data + 2) >> (2 * i)) & 0b11) {
case 0b01:
result = (result << 1) | 0;
break;
case 0b10:
result = (result << 1) | 1;
break;
default:
return false;
break;
}
}
// trailing parity (odd) test
uint8_t parity_sum = 0;
for(int8_t i = 0; i < 13; i++) {
if(((result >> i) & 1) == 1) {
parity_sum++;
}
}
if((parity_sum % 2) != 1) {
return false;
}
// leading parity (even) test
parity_sum = 0;
for(int8_t i = 13; i < 26; i++) {
if(((result >> i) & 1) == 1) {
parity_sum++;
}
}
if((parity_sum % 2) == 1) {
return false;
}
return true;
}
static void protocol_h10301_decode(const uint32_t* card_data, uint8_t* decoded_data) {
// data decoding
uint32_t result = 0;
// decode from word 1
// coded with 01 = 0, 10 = 1 transitions
for(int8_t i = 9; i >= 0; i--) {
switch((*(card_data + 1) >> (2 * i)) & 0b11) {
case 0b01:
result = (result << 1) | 0;
break;
case 0b10:
result = (result << 1) | 1;
break;
default:
break;
}
}
// decode from word 2
// coded with 01 = 0, 10 = 1 transitions
for(int8_t i = 15; i >= 0; i--) {
switch((*(card_data + 2) >> (2 * i)) & 0b11) {
case 0b01:
result = (result << 1) | 0;
break;
case 0b10:
result = (result << 1) | 1;
break;
default:
break;
}
}
uint8_t data[H10301_DECODED_DATA_SIZE] = {
(uint8_t)(result >> 17), (uint8_t)(result >> 9), (uint8_t)(result >> 1)};
memcpy(decoded_data, &data, H10301_DECODED_DATA_SIZE);
}
bool protocol_h10301_decoder_feed(ProtocolH10301* protocol, bool level, uint32_t duration) {
bool value;
uint32_t count;
bool result = false;
fsk_demod_feed(protocol->decoder.fsk_demod, level, duration, &value, &count);
if(count > 0) {
for(size_t i = 0; i < count; i++) {
protocol_h10301_decoder_store_data(protocol, value);
if(protocol_h10301_can_be_decoded(protocol->encoded_data)) {
protocol_h10301_decode(protocol->encoded_data, protocol->data);
result = true;
break;
}
}
}
return result;
};
static void protocol_h10301_write_raw_bit(bool bit, uint8_t position, uint32_t* card_data) {
if(bit) {
card_data[position / H10301_BIT_SIZE] |=
1UL << (H10301_BIT_SIZE - (position % H10301_BIT_SIZE) - 1);
} else {
card_data[position / H10301_BIT_SIZE] &=
~(1UL << (H10301_BIT_SIZE - (position % H10301_BIT_SIZE) - 1));
}
}
static void protocol_h10301_write_bit(bool bit, uint8_t position, uint32_t* card_data) {
protocol_h10301_write_raw_bit(bit, position + 0, card_data);
protocol_h10301_write_raw_bit(!bit, position + 1, card_data);
}
void protocol_h10301_encode(const uint8_t* decoded_data, uint8_t* encoded_data) {
uint32_t card_data[H10301_DECODED_DATA_SIZE] = {0, 0, 0};
uint32_t fc_cn = (decoded_data[0] << 16) | (decoded_data[1] << 8) | decoded_data[2];
// even parity sum calculation (high 12 bits of data)
uint8_t even_parity_sum = 0;
for(int8_t i = 12; i < 24; i++) {
if(((fc_cn >> i) & 1) == 1) {
even_parity_sum++;
}
}
// odd parity sum calculation (low 12 bits of data)
uint8_t odd_parity_sum = 1;
for(int8_t i = 0; i < 12; i++) {
if(((fc_cn >> i) & 1) == 1) {
odd_parity_sum++;
}
}
// 0x1D preamble
protocol_h10301_write_raw_bit(0, 0, card_data);
protocol_h10301_write_raw_bit(0, 1, card_data);
protocol_h10301_write_raw_bit(0, 2, card_data);
protocol_h10301_write_raw_bit(1, 3, card_data);
protocol_h10301_write_raw_bit(1, 4, card_data);
protocol_h10301_write_raw_bit(1, 5, card_data);
protocol_h10301_write_raw_bit(0, 6, card_data);
protocol_h10301_write_raw_bit(1, 7, card_data);
// company / OEM code 1
protocol_h10301_write_bit(0, 8, card_data);
protocol_h10301_write_bit(0, 10, card_data);
protocol_h10301_write_bit(0, 12, card_data);
protocol_h10301_write_bit(0, 14, card_data);
protocol_h10301_write_bit(0, 16, card_data);
protocol_h10301_write_bit(0, 18, card_data);
protocol_h10301_write_bit(1, 20, card_data);
// card format / length 1
protocol_h10301_write_bit(0, 22, card_data);
protocol_h10301_write_bit(0, 24, card_data);
protocol_h10301_write_bit(0, 26, card_data);
protocol_h10301_write_bit(0, 28, card_data);
protocol_h10301_write_bit(0, 30, card_data);
protocol_h10301_write_bit(0, 32, card_data);
protocol_h10301_write_bit(0, 34, card_data);
protocol_h10301_write_bit(0, 36, card_data);
protocol_h10301_write_bit(0, 38, card_data);
protocol_h10301_write_bit(0, 40, card_data);
protocol_h10301_write_bit(1, 42, card_data);
// even parity bit
protocol_h10301_write_bit((even_parity_sum % 2), 44, card_data);
// data
for(uint8_t i = 0; i < 24; i++) {
protocol_h10301_write_bit((fc_cn >> (23 - i)) & 1, 46 + (i * 2), card_data);
}
// odd parity bit
protocol_h10301_write_bit((odd_parity_sum % 2), 94, card_data);
memcpy(encoded_data, &card_data, H10301_ENCODED_DATA_SIZE);
}
bool protocol_h10301_encoder_start(ProtocolH10301* protocol) {
protocol_h10301_encode(protocol->data, (uint8_t*)protocol->encoded_data);
protocol->encoder.encoded_index = 0;
protocol->encoder.pulse = 0;
return true;
};
LevelDuration protocol_h10301_encoder_yield(ProtocolH10301* protocol) {
bool level = 0;
uint32_t duration = 0;
// if pulse is zero, we need to output high, otherwise we need to output low
if(protocol->encoder.pulse == 0) {
// get bit
uint8_t bit =
(protocol->encoded_data[protocol->encoder.encoded_index / H10301_BIT_SIZE] >>
((H10301_BIT_SIZE - 1) - (protocol->encoder.encoded_index % H10301_BIT_SIZE))) &
1;
// get pulse from oscillator
bool advance = fsk_osc_next(protocol->encoder.fsk_osc, bit, &duration);
if(advance) {
protocol->encoder.encoded_index++;
if(protocol->encoder.encoded_index >= (H10301_BIT_MAX_SIZE)) {
protocol->encoder.encoded_index = 0;
}
}
// duration diveded by 2 because we need to output high and low
duration = duration / 2;
protocol->encoder.pulse = duration;
level = true;
} else {
// output low half and reset pulse
duration = protocol->encoder.pulse;
protocol->encoder.pulse = 0;
level = false;
}
return level_duration_make(level, duration);
};
bool protocol_h10301_write_data(ProtocolH10301* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
// Correct protocol data by redecoding
protocol_h10301_encoder_start(protocol);
protocol_h10301_decode(protocol->encoded_data, protocol->data);
protocol_h10301_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_MODULATION_FSK2a | LFRFID_T5577_BITRATE_RF_50 |
(3 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = protocol->encoded_data[0];
request->t5577.block[2] = protocol->encoded_data[1];
request->t5577.block[3] = protocol->encoded_data[2];
request->t5577.blocks_to_write = 4;
result = true;
}
return result;
};
void protocol_h10301_render_data(ProtocolH10301* protocol, FuriString* result) {
uint8_t* data = protocol->data;
furi_string_printf(
result,
"FC: %hhu\n"
"Card: %hu",
data[0],
(uint16_t)((data[1] << 8) | (data[2])));
};
const ProtocolBase protocol_h10301 = {
.name = "H10301",
.manufacturer = "HID",
.data_size = H10301_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_h10301_alloc,
.free = (ProtocolFree)protocol_h10301_free,
.get_data = (ProtocolGetData)protocol_h10301_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_h10301_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_h10301_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_h10301_encoder_start,
.yield = (ProtocolEncoderYield)protocol_h10301_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_h10301_render_data,
.render_brief_data = (ProtocolRenderData)protocol_h10301_render_data,
.write_data = (ProtocolWriteData)protocol_h10301_write_data,
};