unleashed-firmware/lib/subghz/protocols/chamberlain_code.c
Skorpionm 163be139eb
SubGhz: add protocol BinRAW (binarization of data quantized by the minimum correlated duration) (#2322)
* SubGhz: add protocol DataRAW (binarization of data quantized by the minimum correlated duration)
* SubGhz: fix name history
* SubGhz: add encoder Data_RAW protocol
* SubGhz: decreasing the size of the LevelDuration structure
* SubGhz: history, added check that there is free RAM
* SubGhz: checking for free memory, support to pass without gap
* SubGhz: add running average to average the result, auto cut noise at the end of a burst
* SubGhz: support for repeating sequences
* SubGhz: fix secplus_v2 decoder
* SubGhz: bin_RAW fix add history
* SubGhz: add debug
* SubGhz: debug refactoring
* FURI_LOG: add FURI_LOG_RAW_x formatted string output like printf
* SubGhz: fix new FURI_LOG metod
* FURI_LOG: fix unit test
* SubGhz: add enable/disable BinRAW protocol decoding
* SubGhz: fix PVS
* SubGhz: forcibly turn off the speaker when exiting SubGhz
* SubGhz: adaptive adjustment to the noise level

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2023-02-09 13:48:06 +09:00

499 lines
19 KiB
C

#include "chamberlain_code.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolChamb_Code"
#define CHAMBERLAIN_CODE_BIT_STOP 0b0001
#define CHAMBERLAIN_CODE_BIT_1 0b0011
#define CHAMBERLAIN_CODE_BIT_0 0b0111
#define CHAMBERLAIN_7_CODE_MASK 0xF000000FF0F
#define CHAMBERLAIN_8_CODE_MASK 0xF00000F00F
#define CHAMBERLAIN_9_CODE_MASK 0xF000000000F
#define CHAMBERLAIN_7_CODE_MASK_CHECK 0x10000001101
#define CHAMBERLAIN_8_CODE_MASK_CHECK 0x1000001001
#define CHAMBERLAIN_9_CODE_MASK_CHECK 0x10000000001
#define CHAMBERLAIN_7_CODE_DIP_PATTERN "%c%c%c%c%c%c%c"
#define CHAMBERLAIN_7_CODE_DATA_TO_DIP(dip) \
(dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), \
(dip & 0x0008 ? '1' : '0'), (dip & 0x0004 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), \
(dip & 0x0001 ? '1' : '0')
#define CHAMBERLAIN_8_CODE_DIP_PATTERN "%c%c%c%c%cx%c%c"
#define CHAMBERLAIN_8_CODE_DATA_TO_DIP(dip) \
(dip & 0x0080 ? '1' : '0'), (dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), \
(dip & 0x0010 ? '1' : '0'), (dip & 0x0008 ? '1' : '0'), (dip & 0x0001 ? '1' : '0'), \
(dip & 0x0002 ? '1' : '0')
#define CHAMBERLAIN_9_CODE_DIP_PATTERN "%c%c%c%c%c%c%c%c%c"
#define CHAMBERLAIN_9_CODE_DATA_TO_DIP(dip) \
(dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), (dip & 0x0040 ? '1' : '0'), \
(dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), (dip & 0x0008 ? '1' : '0'), \
(dip & 0x0001 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), (dip & 0x0004 ? '1' : '0')
static const SubGhzBlockConst subghz_protocol_chamb_code_const = {
.te_short = 1000,
.te_long = 3000,
.te_delta = 200,
.min_count_bit_for_found = 10,
};
struct SubGhzProtocolDecoderChamb_Code {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
};
struct SubGhzProtocolEncoderChamb_Code {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
Chamb_CodeDecoderStepReset = 0,
Chamb_CodeDecoderStepFoundStartBit,
Chamb_CodeDecoderStepSaveDuration,
Chamb_CodeDecoderStepCheckDuration,
} Chamb_CodeDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_chamb_code_decoder = {
.alloc = subghz_protocol_decoder_chamb_code_alloc,
.free = subghz_protocol_decoder_chamb_code_free,
.feed = subghz_protocol_decoder_chamb_code_feed,
.reset = subghz_protocol_decoder_chamb_code_reset,
.get_hash_data = subghz_protocol_decoder_chamb_code_get_hash_data,
.serialize = subghz_protocol_decoder_chamb_code_serialize,
.deserialize = subghz_protocol_decoder_chamb_code_deserialize,
.get_string = subghz_protocol_decoder_chamb_code_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_chamb_code_encoder = {
.alloc = subghz_protocol_encoder_chamb_code_alloc,
.free = subghz_protocol_encoder_chamb_code_free,
.deserialize = subghz_protocol_encoder_chamb_code_deserialize,
.stop = subghz_protocol_encoder_chamb_code_stop,
.yield = subghz_protocol_encoder_chamb_code_yield,
};
const SubGhzProtocol subghz_protocol_chamb_code = {
.name = SUBGHZ_PROTOCOL_CHAMB_CODE_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_chamb_code_decoder,
.encoder = &subghz_protocol_chamb_code_encoder,
};
void* subghz_protocol_encoder_chamb_code_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderChamb_Code* instance = malloc(sizeof(SubGhzProtocolEncoderChamb_Code));
instance->base.protocol = &subghz_protocol_chamb_code;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 24;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_chamb_code_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderChamb_Code* instance = context;
free(instance->encoder.upload);
free(instance);
}
static uint64_t subghz_protocol_chamb_bit_to_code(uint64_t data, uint8_t size) {
uint64_t data_res = 0;
for(uint8_t i = 0; i < size; i++) {
if(!(bit_read(data, size - i - 1))) {
data_res = data_res << 4 | CHAMBERLAIN_CODE_BIT_0;
} else {
data_res = data_res << 4 | CHAMBERLAIN_CODE_BIT_1;
}
}
return data_res;
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderChamb_Code instance
* @return true On success
*/
static bool
subghz_protocol_encoder_chamb_code_get_upload(SubGhzProtocolEncoderChamb_Code* instance) {
furi_assert(instance);
uint64_t data = subghz_protocol_chamb_bit_to_code(
instance->generic.data, instance->generic.data_count_bit);
switch(instance->generic.data_count_bit) {
case 7:
data = ((data >> 4) << 16) | (data & 0xF) << 4 | CHAMBERLAIN_7_CODE_MASK_CHECK;
break;
case 8:
data = ((data >> 12) << 16) | (data & 0xFF) << 4 | CHAMBERLAIN_8_CODE_MASK_CHECK;
break;
case 9:
data = (data << 4) | CHAMBERLAIN_9_CODE_MASK_CHECK;
break;
default:
FURI_LOG_E(TAG, "Invalid bits count");
return false;
break;
}
#define UPLOAD_HEX_DATA_SIZE 10
uint8_t upload_hex_data[UPLOAD_HEX_DATA_SIZE] = {0};
size_t upload_hex_count_bit = 0;
//insert guard time
for(uint8_t i = 0; i < 36; i++) {
subghz_protocol_blocks_set_bit_array(
0, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE);
}
//insert data
switch(instance->generic.data_count_bit) {
case 7:
case 9:
for(uint8_t i = 44; i > 0; i--) {
if(!bit_read(data, i - 1)) {
subghz_protocol_blocks_set_bit_array(
0, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE);
} else {
subghz_protocol_blocks_set_bit_array(
1, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE);
}
}
break;
case 8:
for(uint8_t i = 40; i > 0; i--) {
if(!bit_read(data, i - 1)) {
subghz_protocol_blocks_set_bit_array(
0, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE);
} else {
subghz_protocol_blocks_set_bit_array(
1, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE);
}
}
break;
}
instance->encoder.size_upload = subghz_protocol_blocks_get_upload_from_bit_array(
upload_hex_data,
upload_hex_count_bit,
instance->encoder.upload,
instance->encoder.size_upload,
subghz_protocol_chamb_code_const.te_short,
SubGhzProtocolBlockAlignBitLeft);
return true;
}
bool subghz_protocol_encoder_chamb_code_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderChamb_Code* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit >
subghz_protocol_chamb_code_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_chamb_code_get_upload(instance)) break;
instance->encoder.is_running = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_chamb_code_stop(void* context) {
SubGhzProtocolEncoderChamb_Code* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_chamb_code_yield(void* context) {
SubGhzProtocolEncoderChamb_Code* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_chamb_code_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderChamb_Code* instance = malloc(sizeof(SubGhzProtocolDecoderChamb_Code));
instance->base.protocol = &subghz_protocol_chamb_code;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_chamb_code_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderChamb_Code* instance = context;
free(instance);
}
void subghz_protocol_decoder_chamb_code_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderChamb_Code* instance = context;
instance->decoder.parser_step = Chamb_CodeDecoderStepReset;
}
static bool subghz_protocol_chamb_code_to_bit(uint64_t* data, uint8_t size) {
uint64_t data_tmp = data[0];
uint64_t data_res = 0;
for(uint8_t i = 0; i < size; i++) {
if((data_tmp & 0xFll) == CHAMBERLAIN_CODE_BIT_0) {
bit_write(data_res, i, 0);
} else if((data_tmp & 0xFll) == CHAMBERLAIN_CODE_BIT_1) {
bit_write(data_res, i, 1);
} else {
return false;
}
data_tmp >>= 4;
}
data[0] = data_res;
return true;
}
static bool subghz_protocol_decoder_chamb_code_check_mask_and_parse(
SubGhzProtocolDecoderChamb_Code* instance) {
furi_assert(instance);
if(instance->decoder.decode_count_bit >
subghz_protocol_chamb_code_const.min_count_bit_for_found + 1)
return false;
if((instance->decoder.decode_data & CHAMBERLAIN_7_CODE_MASK) ==
CHAMBERLAIN_7_CODE_MASK_CHECK) {
instance->decoder.decode_count_bit = 7;
instance->decoder.decode_data &= ~CHAMBERLAIN_7_CODE_MASK;
instance->decoder.decode_data = (instance->decoder.decode_data >> 12) |
((instance->decoder.decode_data >> 4) & 0xF);
} else if(
(instance->decoder.decode_data & CHAMBERLAIN_8_CODE_MASK) ==
CHAMBERLAIN_8_CODE_MASK_CHECK) {
instance->decoder.decode_count_bit = 8;
instance->decoder.decode_data &= ~CHAMBERLAIN_8_CODE_MASK;
instance->decoder.decode_data = instance->decoder.decode_data >> 4 |
CHAMBERLAIN_CODE_BIT_0 << 8; //DIP 6 no use
} else if(
(instance->decoder.decode_data & CHAMBERLAIN_9_CODE_MASK) ==
CHAMBERLAIN_9_CODE_MASK_CHECK) {
instance->decoder.decode_count_bit = 9;
instance->decoder.decode_data &= ~CHAMBERLAIN_9_CODE_MASK;
instance->decoder.decode_data >>= 4;
} else {
return false;
}
return subghz_protocol_chamb_code_to_bit(
&instance->decoder.decode_data, instance->decoder.decode_count_bit);
}
void subghz_protocol_decoder_chamb_code_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderChamb_Code* instance = context;
switch(instance->decoder.parser_step) {
case Chamb_CodeDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short * 39) <
subghz_protocol_chamb_code_const.te_delta * 20)) {
//Found header Chamb_Code
instance->decoder.parser_step = Chamb_CodeDecoderStepFoundStartBit;
}
break;
case Chamb_CodeDecoderStepFoundStartBit:
if((level) && (DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short) <
subghz_protocol_chamb_code_const.te_delta)) {
//Found start bit Chamb_Code
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->decoder.decode_data = instance->decoder.decode_data << 4 |
CHAMBERLAIN_CODE_BIT_STOP;
instance->decoder.decode_count_bit++;
instance->decoder.parser_step = Chamb_CodeDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = Chamb_CodeDecoderStepReset;
}
break;
case Chamb_CodeDecoderStepSaveDuration:
if(!level) { //save interval
if(duration > subghz_protocol_chamb_code_const.te_short * 5) {
if(instance->decoder.decode_count_bit >=
subghz_protocol_chamb_code_const.min_count_bit_for_found) {
instance->generic.serial = 0x0;
instance->generic.btn = 0x0;
if(subghz_protocol_decoder_chamb_code_check_mask_and_parse(instance)) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
}
instance->decoder.parser_step = Chamb_CodeDecoderStepReset;
} else {
instance->decoder.te_last = duration;
instance->decoder.parser_step = Chamb_CodeDecoderStepCheckDuration;
}
} else {
instance->decoder.parser_step = Chamb_CodeDecoderStepReset;
}
break;
case Chamb_CodeDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF( //Found stop bit Chamb_Code
instance->decoder.te_last,
subghz_protocol_chamb_code_const.te_short * 3) <
subghz_protocol_chamb_code_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short) <
subghz_protocol_chamb_code_const.te_delta)) {
instance->decoder.decode_data = instance->decoder.decode_data << 4 |
CHAMBERLAIN_CODE_BIT_STOP;
instance->decoder.decode_count_bit++;
instance->decoder.parser_step = Chamb_CodeDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(
instance->decoder.te_last, subghz_protocol_chamb_code_const.te_short * 2) <
subghz_protocol_chamb_code_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short * 2) <
subghz_protocol_chamb_code_const.te_delta)) {
instance->decoder.decode_data = instance->decoder.decode_data << 4 |
CHAMBERLAIN_CODE_BIT_1;
instance->decoder.decode_count_bit++;
instance->decoder.parser_step = Chamb_CodeDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(
instance->decoder.te_last, subghz_protocol_chamb_code_const.te_short) <
subghz_protocol_chamb_code_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short * 3) <
subghz_protocol_chamb_code_const.te_delta)) {
instance->decoder.decode_data = instance->decoder.decode_data << 4 |
CHAMBERLAIN_CODE_BIT_0;
instance->decoder.decode_count_bit++;
instance->decoder.parser_step = Chamb_CodeDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = Chamb_CodeDecoderStepReset;
}
} else {
instance->decoder.parser_step = Chamb_CodeDecoderStepReset;
}
break;
}
}
uint8_t subghz_protocol_decoder_chamb_code_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderChamb_Code* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_chamb_code_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderChamb_Code* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_chamb_code_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderChamb_Code* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if(instance->generic.data_count_bit >
subghz_protocol_chamb_code_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
void subghz_protocol_decoder_chamb_code_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderChamb_Code* instance = context;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
furi_string_cat_printf(
output,
"%s %db\r\n"
"Key:0x%03lX\r\n"
"Yek:0x%03lX\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_lo,
code_found_reverse_lo);
switch(instance->generic.data_count_bit) {
case 7:
furi_string_cat_printf(
output,
"DIP:" CHAMBERLAIN_7_CODE_DIP_PATTERN "\r\n",
CHAMBERLAIN_7_CODE_DATA_TO_DIP(code_found_lo));
break;
case 8:
furi_string_cat_printf(
output,
"DIP:" CHAMBERLAIN_8_CODE_DIP_PATTERN "\r\n",
CHAMBERLAIN_8_CODE_DATA_TO_DIP(code_found_lo));
break;
case 9:
furi_string_cat_printf(
output,
"DIP:" CHAMBERLAIN_9_CODE_DIP_PATTERN "\r\n",
CHAMBERLAIN_9_CODE_DATA_TO_DIP(code_found_lo));
break;
default:
break;
}
}