unleashed-firmware/firmware/targets/f6/api-hal/api-hal-irda.c
Albert Kharisov 13c5a8cb20
[FL-1505] Add RAW format (#576)
* Add RAW format
* F5 stubs for build to pass
* Fix saving decoded signal error
* Irda: set ISR before starting timer, remove explicit NVIC configuration

Co-authored-by: あく <alleteam@gmail.com>
2021-07-16 19:43:54 +03:00

160 lines
5.3 KiB
C

#include "api-hal-irda.h"
#include <cmsis_os2.h>
#include <api-hal-interrupt.h>
#include <api-hal-resources.h>
#include <stdint.h>
#include <stm32wbxx_ll_tim.h>
#include <stm32wbxx_ll_gpio.h>
#include <stdio.h>
#include <furi.h>
#include <main.h>
#include <api-hal-pwm.h>
static struct{
ApiHalIrdaCaptureCallback capture_callback;
void *capture_context;
ApiHalIrdaTimeoutCallback timeout_callback;
void *timeout_context;
} timer_irda;
typedef enum{
TimerIRQSourceCCI1,
TimerIRQSourceCCI2,
} TimerIRQSource;
static void api_hal_irda_handle_timeout(void) {
/* Timers CNT register starts to counting from 0 to ARR, but it is
* reseted when Channel 1 catches interrupt. It is not reseted by
* channel 2, though, so we have to distract it's values (see TimerIRQSourceCCI1 ISR).
* This can cause false timeout: when time is over, but we started
* receiving new signal few microseconds ago, because CNT register
* is reseted once per period, not per sample. */
if (LL_GPIO_IsInputPinSet(gpio_irda_rx.port, gpio_irda_rx.pin) == 0)
return;
if (timer_irda.timeout_callback)
timer_irda.timeout_callback(timer_irda.timeout_context);
}
/* High pin level is a Space state of IRDA signal. Invert level for further processing. */
static void api_hal_irda_handle_capture(TimerIRQSource source) {
uint32_t duration = 0;
bool level = 0;
switch (source) {
case TimerIRQSourceCCI1:
duration = LL_TIM_IC_GetCaptureCH1(TIM2) - LL_TIM_IC_GetCaptureCH2(TIM2);
level = 1;
break;
case TimerIRQSourceCCI2:
duration = LL_TIM_IC_GetCaptureCH2(TIM2);
level = 0;
break;
default:
furi_check(0);
}
if (timer_irda.capture_callback)
timer_irda.capture_callback(timer_irda.capture_context, level, duration);
}
static void api_hal_irda_isr() {
if(LL_TIM_IsActiveFlag_CC3(TIM2)) {
LL_TIM_ClearFlag_CC3(TIM2);
api_hal_irda_handle_timeout();
}
if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
LL_TIM_ClearFlag_CC1(TIM2);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC1S)) {
// input capture
api_hal_irda_handle_capture(TimerIRQSourceCCI1);
}
}
if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
LL_TIM_ClearFlag_CC2(TIM2);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC2S)) {
// input capture
api_hal_irda_handle_capture(TimerIRQSourceCCI2);
}
}
}
void api_hal_irda_rx_irq_init(void) {
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
hal_gpio_init_ex(&gpio_irda_rx, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64 - 1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 0x7FFFFFFE;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM2);
LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI1FP1);
LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
LL_TIM_CC_DisableChannel(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_FALLING);
LL_TIM_DisableIT_TRIG(TIM2);
LL_TIM_DisableDMAReq_TRIG(TIM2);
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
LL_TIM_EnableMasterSlaveMode(TIM2);
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING);
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_INDIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
LL_TIM_EnableIT_CC1(TIM2);
LL_TIM_EnableIT_CC2(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
api_hal_interrupt_set_timer_isr(TIM2, api_hal_irda_isr);
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
}
void api_hal_irda_rx_irq_deinit(void) {
LL_TIM_DeInit(TIM2);
api_hal_interrupt_set_timer_isr(TIM2, NULL);
}
void api_hal_irda_rx_timeout_irq_init(uint32_t timeout_ms) {
LL_TIM_OC_SetCompareCH3(TIM2, timeout_ms * 1000);
LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_ACTIVE);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH3);
LL_TIM_EnableIT_CC3(TIM2);
}
bool api_hal_irda_rx_irq_is_busy(void) {
return (LL_TIM_IsEnabledIT_CC1(TIM2) || LL_TIM_IsEnabledIT_CC2(TIM2));
}
void api_hal_irda_rx_irq_set_callback(ApiHalIrdaCaptureCallback callback, void *ctx) {
timer_irda.capture_callback = callback;
timer_irda.capture_context = ctx;
}
void api_hal_irda_rx_timeout_irq_set_callback(ApiHalIrdaTimeoutCallback callback, void *ctx) {
timer_irda.timeout_callback = callback;
timer_irda.timeout_context = ctx;
}
void api_hal_irda_pwm_set(float value, float freq) {
hal_pwmn_set(value, freq, &IRDA_TX_TIM, IRDA_TX_CH);
}
void api_hal_irda_pwm_stop() {
hal_pwmn_stop(&IRDA_TX_TIM, IRDA_TX_CH);
}