#include #include #include #include #include #include #include #include #include #define BORDER_OFFSET 1 #define MARGIN_OFFSET 3 #define BLOCK_HEIGHT 6 #define BLOCK_WIDTH 6 #define FIELD_WIDTH 11 #define FIELD_HEIGHT 24 #define MAX_FALL_SPEED 500 #define MIN_FALL_SPEED 100 typedef struct Point { // Also used for offset data, which is sometimes negative int8_t x, y; } Point; // Rotation logic taken from // https://www.youtube.com/watch?v=yIpk5TJ_uaI typedef enum { OffsetTypeCommon, OffsetTypeI, OffsetTypeO } OffsetType; // Since we only support rotating clockwise, these are actual translation values, // not values to be subtracted to get translation values static const Point rotOffsetTranslation[3][4][5] = { {{{0, 0}, {-1, 0}, {-1, -1}, {0, 2}, {-1, 2}}, {{0, 0}, {1, 0}, {1, 1}, {0, -2}, {1, -2}}, {{0, 0}, {1, 0}, {1, -1}, {0, 2}, {1, 2}}, {{0, 0}, {-1, 0}, {-1, 1}, {0, -2}, {-1, -2}}}, {{{1, 0}, {-1, 0}, {2, 0}, {-1, 1}, {2, -2}}, {{0, 1}, {-1, 1}, {2, 1}, {-1, -1}, {2, 2}}, {{-1, 0}, {1, 0}, {-2, 0}, {1, -1}, {-2, 2}}, {{0, -1}, {1, -1}, {-2, -1}, {1, 1}, {-2, -2}}}, {{{0, -1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}, {{1, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}, {{0, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}, {{-1, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}}}; typedef struct { Point p[4]; uint8_t rotIdx; OffsetType offsetType; } Piece; // Shapes @ spawn locations, rotation point first static Piece shapes[] = { {.p = {{5, 1}, {4, 0}, {5, 0}, {6, 1}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // Z {.p = {{5, 1}, {4, 1}, {5, 0}, {6, 0}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // S {.p = {{5, 1}, {4, 1}, {6, 1}, {6, 0}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // L {.p = {{5, 1}, {4, 0}, {4, 1}, {6, 1}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // J {.p = {{5, 1}, {4, 1}, {5, 0}, {6, 1}}, .rotIdx = 0, .offsetType = OffsetTypeCommon}, // T {.p = {{5, 1}, {4, 1}, {6, 1}, {7, 1}}, .rotIdx = 0, .offsetType = OffsetTypeI}, // I {.p = {{5, 1}, {5, 0}, {6, 0}, {6, 1}}, .rotIdx = 0, .offsetType = OffsetTypeO} // O }; typedef enum { GameStatePlaying, GameStateGameOver } GameState; typedef struct { bool playField[FIELD_HEIGHT][FIELD_WIDTH]; Piece currPiece; uint16_t numLines; uint16_t fallSpeed; GameState gameState; FuriTimer* timer; } TetrisState; typedef enum { EventTypeTick, EventTypeKey, } EventType; typedef struct { EventType type; InputEvent input; } TetrisEvent; static void tetris_game_draw_border(Canvas* const canvas) { canvas_draw_line(canvas, 0, 0, 0, 127); canvas_draw_line(canvas, 0, 127, 63, 127); canvas_draw_line(canvas, 63, 127, 63, 0); canvas_draw_line(canvas, 2, 0, 2, 125); canvas_draw_line(canvas, 2, 125, 61, 125); canvas_draw_line(canvas, 61, 125, 61, 0); } static void tetris_game_draw_playfield(Canvas* const canvas, const TetrisState* tetris_state) { // Playfield: 11 x 24 for(int y = 0; y < FIELD_HEIGHT; y++) { for(int x = 0; x < FIELD_WIDTH; x++) { if(tetris_state->playField[y][x]) { uint16_t xOffset = x * 5; uint16_t yOffset = y * 5; canvas_draw_rframe( canvas, BORDER_OFFSET + MARGIN_OFFSET + xOffset, BORDER_OFFSET + MARGIN_OFFSET + yOffset - 1, BLOCK_WIDTH, BLOCK_HEIGHT, 1); canvas_draw_dot( canvas, BORDER_OFFSET + MARGIN_OFFSET + xOffset + 2, BORDER_OFFSET + MARGIN_OFFSET + yOffset + 1); canvas_draw_dot( canvas, BORDER_OFFSET + MARGIN_OFFSET + xOffset + 3, BORDER_OFFSET + MARGIN_OFFSET + yOffset + 1); canvas_draw_dot( canvas, BORDER_OFFSET + MARGIN_OFFSET + xOffset + 2, BORDER_OFFSET + MARGIN_OFFSET + yOffset + 2); } } } } static void tetris_game_render_callback(Canvas* const canvas, void* ctx) { const TetrisState* tetris_state = acquire_mutex((ValueMutex*)ctx, 25); if(tetris_state == NULL) { FURI_LOG_E("TetrisGame", "it null"); return; } tetris_game_draw_border(canvas); tetris_game_draw_playfield(canvas, tetris_state); // Show score on the game field if(tetris_state->gameState == GameStatePlaying) { char buffer2[6]; snprintf(buffer2, sizeof(buffer2), "%u", tetris_state->numLines); canvas_draw_str_aligned(canvas, 58, 10, AlignRight, AlignBottom, buffer2); } if(tetris_state->gameState == GameStateGameOver) { // 128 x 64 canvas_set_color(canvas, ColorWhite); canvas_draw_box(canvas, 1, 52, 62, 24); canvas_set_color(canvas, ColorBlack); canvas_draw_frame(canvas, 1, 52, 62, 24); canvas_set_font(canvas, FontPrimary); canvas_draw_str(canvas, 4, 63, "Game Over"); char buffer[13]; snprintf(buffer, sizeof(buffer), "Lines: %u", tetris_state->numLines); canvas_set_font(canvas, FontSecondary); canvas_draw_str_aligned(canvas, 32, 73, AlignCenter, AlignBottom, buffer); } release_mutex((ValueMutex*)ctx, tetris_state); } static void tetris_game_input_callback(InputEvent* input_event, FuriMessageQueue* event_queue) { furi_assert(event_queue); TetrisEvent event = {.type = EventTypeKey, .input = *input_event}; furi_message_queue_put(event_queue, &event, FuriWaitForever); } static void tetris_game_init_state(TetrisState* tetris_state) { tetris_state->gameState = GameStatePlaying; tetris_state->numLines = 0; tetris_state->fallSpeed = MAX_FALL_SPEED; memset(tetris_state->playField, 0, sizeof(tetris_state->playField)); memcpy(&tetris_state->currPiece, &shapes[rand() % 7], sizeof(tetris_state->currPiece)); furi_timer_start(tetris_state->timer, tetris_state->fallSpeed); } static void tetris_game_remove_curr_piece(TetrisState* tetris_state) { for(int i = 0; i < 4; i++) { uint8_t x = tetris_state->currPiece.p[i].x; uint8_t y = tetris_state->currPiece.p[i].y; tetris_state->playField[y][x] = false; } } static void tetris_game_render_curr_piece(TetrisState* tetris_state) { for(int i = 0; i < 4; i++) { uint8_t x = tetris_state->currPiece.p[i].x; uint8_t y = tetris_state->currPiece.p[i].y; tetris_state->playField[y][x] = true; } } static void tetris_game_rotate_shape(Point currShape[], Point newShape[]) { // Copy shape data for(int i = 0; i < 4; i++) { newShape[i] = currShape[i]; } for(int i = 1; i < 4; i++) { int8_t relX = currShape[i].x - currShape[0].x; int8_t relY = currShape[i].y - currShape[0].y; // Matrix rotation thing int8_t newRelX = (relX * 0) + (relY * -1); int8_t newRelY = (relX * 1) + (relY * 0); newShape[i].x = currShape[0].x + newRelX; newShape[i].y = currShape[0].y + newRelY; } } static void tetris_game_apply_kick(Point points[], Point kick) { for(int i = 0; i < 4; i++) { points[i].x += kick.x; points[i].y += kick.y; } } static bool tetris_game_is_valid_pos(TetrisState* tetris_state, Point* shape) { for(int i = 0; i < 4; i++) { if(shape[i].x < 0 || shape[i].x > (FIELD_WIDTH - 1) || tetris_state->playField[shape[i].y][shape[i].x] == true) { return false; } } return true; } static void tetris_game_try_rotation(TetrisState* tetris_state, Piece* newPiece) { uint8_t currRotIdx = tetris_state->currPiece.rotIdx; Point* rotatedShape = malloc(sizeof(Point) * 4); Point* kickedShape = malloc(sizeof(Point) * 4); memcpy(rotatedShape, &tetris_state->currPiece.p, sizeof(tetris_state->currPiece.p)); tetris_game_rotate_shape(tetris_state->currPiece.p, rotatedShape); for(int i = 0; i < 5; i++) { memcpy(kickedShape, rotatedShape, (sizeof(Point) * 4)); tetris_game_apply_kick( kickedShape, rotOffsetTranslation[newPiece->offsetType][currRotIdx][i]); if(tetris_game_is_valid_pos(tetris_state, kickedShape)) { memcpy(&newPiece->p, kickedShape, sizeof(newPiece->p)); newPiece->rotIdx = (newPiece->rotIdx + 1) % 4; break; } } free(rotatedShape); free(kickedShape); } static bool tetris_game_row_is_line(bool row[]) { for(int i = 0; i < FIELD_WIDTH; i++) { if(row[i] == false) return false; } return true; } static void tetris_game_check_for_lines(TetrisState* tetris_state, uint8_t* lines, uint8_t* numLines) { for(int i = 0; i < FIELD_HEIGHT; i++) { if(tetris_game_row_is_line(tetris_state->playField[i])) { *(lines++) = i; *numLines += 1; } } } static bool tetris_game_piece_at_bottom(TetrisState* tetris_state, Piece* newPiece) { for(int i = 0; i < 4; i++) { Point* pos = (Point*)&newPiece->p; if(pos[i].y >= FIELD_HEIGHT || tetris_state->playField[pos[i].y][pos[i].x] == true) { return true; } } return false; } static void tetris_game_update_timer_callback(FuriMessageQueue* event_queue) { furi_assert(event_queue); TetrisEvent event = {.type = EventTypeTick}; furi_message_queue_put(event_queue, &event, FuriWaitForever); } static void tetris_game_process_step(TetrisState* tetris_state, Piece* newPiece, bool wasDownMove) { if(tetris_state->gameState == GameStateGameOver) return; tetris_game_remove_curr_piece(tetris_state); if(wasDownMove) { if(tetris_game_piece_at_bottom(tetris_state, newPiece)) { furi_timer_stop(tetris_state->timer); tetris_game_render_curr_piece(tetris_state); uint8_t numLines = 0; uint8_t lines[] = {0, 0, 0, 0}; uint16_t nextFallSpeed; tetris_game_check_for_lines(tetris_state, lines, &numLines); if(numLines > 0) { for(int i = 0; i < numLines; i++) { // zero out row for(int j = 0; j < FIELD_WIDTH; j++) { tetris_state->playField[lines[i]][j] = false; } // move all above rows down for(int k = lines[i]; k >= 0; k--) { for(int m = 0; m < FIELD_WIDTH; m++) { tetris_state->playField[k][m] = (k == 0) ? false : tetris_state->playField[k - 1][m]; } } } uint16_t oldNumLines = tetris_state->numLines; tetris_state->numLines += numLines; if((oldNumLines / 10) % 10 != (tetris_state->numLines / 10) % 10) { nextFallSpeed = tetris_state->fallSpeed - (100 / (tetris_state->numLines / 10)); if (nextFallSpeed >= MIN_FALL_SPEED){ tetris_state->fallSpeed = nextFallSpeed; } } } // Check for game over Piece* spawnedPiece = &shapes[rand() % 7]; if(!tetris_game_is_valid_pos(tetris_state, spawnedPiece->p)) { tetris_state->gameState = GameStateGameOver; } else { memcpy(&tetris_state->currPiece, spawnedPiece, sizeof(tetris_state->currPiece)); furi_timer_start(tetris_state->timer, tetris_state->fallSpeed); } } } if(tetris_game_is_valid_pos(tetris_state, newPiece->p)) { memcpy(&tetris_state->currPiece, newPiece, sizeof(tetris_state->currPiece)); } tetris_game_render_curr_piece(tetris_state); } int32_t tetris_game_app() { FuriMessageQueue* event_queue = furi_message_queue_alloc(8, sizeof(TetrisEvent)); TetrisState* tetris_state = malloc(sizeof(TetrisState)); ValueMutex state_mutex; if(!init_mutex(&state_mutex, tetris_state, sizeof(TetrisState))) { FURI_LOG_E("TetrisGame", "cannot create mutex\r\n"); furi_message_queue_free(event_queue); free(tetris_state); return 255; } // Not doing this eventually causes issues with TimerSvc due to not sleeping/yielding enough in this task TaskHandle_t timer_task = xTaskGetHandle(configTIMER_SERVICE_TASK_NAME); TaskHandle_t curr_task = xTaskGetHandle("Tetris Game"); uint32_t origTimerPrio = uxTaskPriorityGet(timer_task); uint32_t myPrio = uxTaskPriorityGet(curr_task); vTaskPrioritySet(timer_task, myPrio + 1); ViewPort* view_port = view_port_alloc(); view_port_set_orientation(view_port, ViewPortOrientationVertical); view_port_draw_callback_set(view_port, tetris_game_render_callback, &state_mutex); view_port_input_callback_set(view_port, tetris_game_input_callback, event_queue); // Open GUI and register view_port Gui* gui = furi_record_open(RECORD_GUI); gui_add_view_port(gui, view_port, GuiLayerFullscreen); tetris_state->timer = furi_timer_alloc(tetris_game_update_timer_callback, FuriTimerTypePeriodic, event_queue); tetris_game_init_state(tetris_state); TetrisEvent event; Piece* newPiece = malloc(sizeof(Piece)); uint8_t downRepeatCounter = 0; // Call dolphin deed on game start DOLPHIN_DEED(DolphinDeedPluginGameStart); for(bool processing = true; processing;) { // This 10U implicitly sets the game loop speed. downRepeatCounter relies on this value FuriStatus event_status = furi_message_queue_get(event_queue, &event, 10U); TetrisState* tetris_state = (TetrisState*)acquire_mutex_block(&state_mutex); memcpy(newPiece, &tetris_state->currPiece, sizeof(tetris_state->currPiece)); bool wasDownMove = false; if(!furi_hal_gpio_read(&gpio_button_right)) { if(downRepeatCounter > 3) { for(int i = 0; i < 4; i++) { newPiece->p[i].y += 1; } downRepeatCounter = 0; wasDownMove = true; } else { downRepeatCounter++; } } if(event_status == FuriStatusOk) { if(event.type == EventTypeKey) { if(event.input.type == InputTypePress || event.input.type == InputTypeLong || event.input.type == InputTypeRepeat) { switch(event.input.key) { case InputKeyUp: break; case InputKeyDown: break; case InputKeyRight: for(int i = 0; i < 4; i++) { newPiece->p[i].x += 1; } break; case InputKeyLeft: for(int i = 0; i < 4; i++) { newPiece->p[i].x -= 1; } break; case InputKeyOk: if(tetris_state->gameState == GameStatePlaying) { tetris_game_remove_curr_piece(tetris_state); tetris_game_try_rotation(tetris_state, newPiece); tetris_game_render_curr_piece(tetris_state); } else { tetris_game_init_state(tetris_state); } break; case InputKeyBack: processing = false; break; default: break; } } } else if(event.type == EventTypeTick) { // TODO: This is inverted. it returns true when the button is not pressed. // see macro in input.c and do that if(furi_hal_gpio_read(&gpio_button_right)) { for(int i = 0; i < 4; i++) { newPiece->p[i].y += 1; } wasDownMove = true; } } } tetris_game_process_step(tetris_state, newPiece, wasDownMove); view_port_update(view_port); release_mutex(&state_mutex, tetris_state); } furi_timer_free(tetris_state->timer); view_port_enabled_set(view_port, false); gui_remove_view_port(gui, view_port); furi_record_close(RECORD_GUI); view_port_free(view_port); furi_message_queue_free(event_queue); delete_mutex(&state_mutex); vTaskPrioritySet(timer_task, origTimerPrio); free(newPiece); free(tetris_state); return 0; }