#include "star_line.h" #include "keeloq_common.h" #include "../subghz_keystore.h" #include #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #include "../subghz_keystore_i.h" #define TAG "SubGhzProtocolStarLine" static const SubGhzBlockConst subghz_protocol_star_line_const = { .te_short = 250, .te_long = 500, .te_delta = 120, .min_count_bit_for_found = 64, }; struct SubGhzProtocolDecoderStarLine { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; uint16_t header_count; SubGhzKeystore* keystore; const char* manufacture_name; FuriString* manufacture_from_file; }; struct SubGhzProtocolEncoderStarLine { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; SubGhzKeystore* keystore; const char* manufacture_name; FuriString* manufacture_from_file; }; typedef enum { StarLineDecoderStepReset = 0, StarLineDecoderStepCheckPreambula, StarLineDecoderStepSaveDuration, StarLineDecoderStepCheckDuration, } StarLineDecoderStep; const SubGhzProtocolDecoder subghz_protocol_star_line_decoder = { .alloc = subghz_protocol_decoder_star_line_alloc, .free = subghz_protocol_decoder_star_line_free, .feed = subghz_protocol_decoder_star_line_feed, .reset = subghz_protocol_decoder_star_line_reset, .get_hash_data = subghz_protocol_decoder_star_line_get_hash_data, .serialize = subghz_protocol_decoder_star_line_serialize, .deserialize = subghz_protocol_decoder_star_line_deserialize, .get_string = subghz_protocol_decoder_star_line_get_string, }; const SubGhzProtocolEncoder subghz_protocol_star_line_encoder = { .alloc = subghz_protocol_encoder_star_line_alloc, .free = subghz_protocol_encoder_star_line_free, .deserialize = subghz_protocol_encoder_star_line_deserialize, .stop = subghz_protocol_encoder_star_line_stop, .yield = subghz_protocol_encoder_star_line_yield, }; const SubGhzProtocol subghz_protocol_star_line = { .name = SUBGHZ_PROTOCOL_STAR_LINE_NAME, .type = SubGhzProtocolTypeDynamic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send | SubGhzProtocolFlag_StarLine, .decoder = &subghz_protocol_star_line_decoder, .encoder = &subghz_protocol_star_line_encoder, }; /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance * @param keystore Pointer to a SubGhzKeystore* instance * @param manufacture_name */ static void subghz_protocol_star_line_check_remote_controller( SubGhzBlockGeneric* instance, SubGhzKeystore* keystore, const char** manufacture_name); void* subghz_protocol_encoder_star_line_alloc(SubGhzEnvironment* environment) { SubGhzProtocolEncoderStarLine* instance = malloc(sizeof(SubGhzProtocolEncoderStarLine)); instance->base.protocol = &subghz_protocol_star_line; instance->generic.protocol_name = instance->base.protocol->name; instance->keystore = subghz_environment_get_keystore(environment); instance->manufacture_from_file = furi_string_alloc(); instance->encoder.repeat = 10; instance->encoder.size_upload = 256; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_star_line_free(void* context) { furi_assert(context); SubGhzProtocolEncoderStarLine* instance = context; furi_string_free(instance->manufacture_from_file); free(instance->encoder.upload); free(instance); } /** * Key generation from simple data * @param instance Pointer to a SubGhzProtocolEncoderKeeloq* instance * @param btn Button number, 4 bit */ static bool subghz_protocol_star_line_gen_data(SubGhzProtocolEncoderStarLine* instance, uint8_t btn) { if(instance->generic.cnt < 0xFFFF) { if((instance->generic.cnt + furi_hal_subghz_get_rolling_counter_mult()) >= 0xFFFF) { instance->generic.cnt = 0; } else { instance->generic.cnt += furi_hal_subghz_get_rolling_counter_mult(); } } else if(instance->generic.cnt >= 0xFFFF) { instance->generic.cnt = 0; } uint32_t fix = btn << 24 | instance->generic.serial; uint32_t decrypt = btn << 24 | (instance->generic.serial & 0xFF) << 16 | instance->generic.cnt; uint32_t hop = 0; uint64_t man = 0; uint64_t code_found_reverse; int res = 0; if(instance->manufacture_name == 0x0) { instance->manufacture_name = ""; } if(strcmp(instance->manufacture_name, "Unknown") == 0) { code_found_reverse = subghz_protocol_blocks_reverse_key( instance->generic.data, instance->generic.data_count_bit); hop = code_found_reverse & 0x00000000ffffffff; } else { uint8_t kl_type_en = instance->keystore->kl_type; for M_EACH( manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) { res = strcmp( furi_string_get_cstr(manufacture_code->name), instance->manufacture_name); if(res == 0) { switch(manufacture_code->type) { case KEELOQ_LEARNING_SIMPLE: //Simple Learning hop = subghz_protocol_keeloq_common_encrypt(decrypt, manufacture_code->key); break; case KEELOQ_LEARNING_NORMAL: //Normal Learning man = subghz_protocol_keeloq_common_normal_learning( fix, manufacture_code->key); hop = subghz_protocol_keeloq_common_encrypt(decrypt, man); break; case KEELOQ_LEARNING_UNKNOWN: if(kl_type_en == 1) { hop = subghz_protocol_keeloq_common_encrypt( decrypt, manufacture_code->key); } if(kl_type_en == 2) { man = subghz_protocol_keeloq_common_normal_learning( fix, manufacture_code->key); hop = subghz_protocol_keeloq_common_encrypt(decrypt, man); } break; } break; } } } if(hop) { uint64_t yek = (uint64_t)fix << 32 | hop; instance->generic.data = subghz_protocol_blocks_reverse_key(yek, instance->generic.data_count_bit); return true; } else { instance->manufacture_name = "Unknown"; return false; } } bool subghz_protocol_star_line_create_data( void* context, FlipperFormat* flipper_format, uint32_t serial, uint8_t btn, uint16_t cnt, const char* manufacture_name, SubGhzRadioPreset* preset) { furi_assert(context); SubGhzProtocolEncoderStarLine* instance = context; instance->generic.serial = serial; instance->generic.cnt = cnt; instance->manufacture_name = manufacture_name; instance->generic.data_count_bit = 64; bool res = subghz_protocol_star_line_gen_data(instance, btn); if(res) { return SubGhzProtocolStatusOk == subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } return res; } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderKeeloq instance * @return true On success */ static bool subghz_protocol_encoder_star_line_get_upload( SubGhzProtocolEncoderStarLine* instance, uint8_t btn) { furi_assert(instance); // Gen new key if(!subghz_protocol_star_line_gen_data(instance, btn)) { return false; } size_t index = 0; size_t size_upload = 6 * 2 + (instance->generic.data_count_bit * 2); if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } //Send header for(uint8_t i = 6; i > 0; i--) { instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_star_line_const.te_long * 2); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_star_line_const.te_long * 2); } //Send key data for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_star_line_const.te_long); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_star_line_const.te_long); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_star_line_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_star_line_const.te_short); } } return true; } SubGhzProtocolStatus subghz_protocol_encoder_star_line_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderStarLine* instance = context; SubGhzProtocolStatus res = SubGhzProtocolStatusError; do { if(SubGhzProtocolStatusOk != subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } // Read manufacturer from file if(flipper_format_read_string( flipper_format, "Manufacture", instance->manufacture_from_file)) { instance->manufacture_name = furi_string_get_cstr(instance->manufacture_from_file); instance->keystore->mfname = instance->manufacture_name; } else { FURI_LOG_D(TAG, "ENCODER: Missing Manufacture"); } subghz_protocol_star_line_check_remote_controller( &instance->generic, instance->keystore, &instance->manufacture_name); //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); subghz_protocol_encoder_star_line_get_upload(instance, instance->generic.btn); if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); break; } uint8_t key_data[sizeof(uint64_t)] = {0}; for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF; } if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Unable to add Key"); break; } instance->encoder.is_running = true; res = SubGhzProtocolStatusOk; } while(false); return res; } void subghz_protocol_encoder_star_line_stop(void* context) { SubGhzProtocolEncoderStarLine* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_star_line_yield(void* context) { SubGhzProtocolEncoderStarLine* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_star_line_alloc(SubGhzEnvironment* environment) { SubGhzProtocolDecoderStarLine* instance = malloc(sizeof(SubGhzProtocolDecoderStarLine)); instance->base.protocol = &subghz_protocol_star_line; instance->generic.protocol_name = instance->base.protocol->name; instance->manufacture_from_file = furi_string_alloc(); instance->keystore = subghz_environment_get_keystore(environment); return instance; } void subghz_protocol_decoder_star_line_free(void* context) { furi_assert(context); SubGhzProtocolDecoderStarLine* instance = context; furi_string_free(instance->manufacture_from_file); free(instance); } void subghz_protocol_decoder_star_line_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderStarLine* instance = context; instance->decoder.parser_step = StarLineDecoderStepReset; // TODO instance->keystore->mfname = ""; instance->keystore->kl_type = 0; } void subghz_protocol_decoder_star_line_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderStarLine* instance = context; switch(instance->decoder.parser_step) { case StarLineDecoderStepReset: if(level) { if(DURATION_DIFF(duration, subghz_protocol_star_line_const.te_long * 2) < subghz_protocol_star_line_const.te_delta * 2) { instance->decoder.parser_step = StarLineDecoderStepCheckPreambula; instance->header_count++; } else if(instance->header_count > 4) { instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.te_last = duration; instance->decoder.parser_step = StarLineDecoderStepCheckDuration; } } else { instance->header_count = 0; } break; case StarLineDecoderStepCheckPreambula: if((!level) && (DURATION_DIFF(duration, subghz_protocol_star_line_const.te_long * 2) < subghz_protocol_star_line_const.te_delta * 2)) { //Found Preambula instance->decoder.parser_step = StarLineDecoderStepReset; } else { instance->header_count = 0; instance->decoder.parser_step = StarLineDecoderStepReset; } break; case StarLineDecoderStepSaveDuration: if(level) { if(duration >= (subghz_protocol_star_line_const.te_long + subghz_protocol_star_line_const.te_delta)) { instance->decoder.parser_step = StarLineDecoderStepReset; if((instance->decoder.decode_count_bit >= subghz_protocol_star_line_const.min_count_bit_for_found) && (instance->decoder.decode_count_bit <= subghz_protocol_star_line_const.min_count_bit_for_found + 2)) { if(instance->generic.data != instance->decoder.decode_data) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = subghz_protocol_star_line_const.min_count_bit_for_found; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->header_count = 0; break; } else { instance->decoder.te_last = duration; instance->decoder.parser_step = StarLineDecoderStepCheckDuration; } } else { instance->decoder.parser_step = StarLineDecoderStepReset; } break; case StarLineDecoderStepCheckDuration: if(!level) { if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_star_line_const.te_short) < subghz_protocol_star_line_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_star_line_const.te_short) < subghz_protocol_star_line_const.te_delta)) { if(instance->decoder.decode_count_bit < subghz_protocol_star_line_const.min_count_bit_for_found) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); } else { instance->decoder.decode_count_bit++; } instance->decoder.parser_step = StarLineDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_star_line_const.te_long) < subghz_protocol_star_line_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_star_line_const.te_long) < subghz_protocol_star_line_const.te_delta)) { if(instance->decoder.decode_count_bit < subghz_protocol_star_line_const.min_count_bit_for_found) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); } else { instance->decoder.decode_count_bit++; } instance->decoder.parser_step = StarLineDecoderStepSaveDuration; } else { instance->decoder.parser_step = StarLineDecoderStepReset; } } else { instance->decoder.parser_step = StarLineDecoderStepReset; } break; } } /** * Validation of decrypt data. * @param instance Pointer to a SubGhzBlockGeneric instance * @param decrypt Decrypd data * @param btn Button number, 4 bit * @param end_serial decrement the last 10 bits of the serial number * @return true On success */ static inline bool subghz_protocol_star_line_check_decrypt( SubGhzBlockGeneric* instance, uint32_t decrypt, uint8_t btn, uint32_t end_serial) { furi_assert(instance); if((decrypt >> 24 == btn) && ((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) { instance->cnt = decrypt & 0x0000FFFF; return true; } return false; } /** * Checking the accepted code against the database manafacture key * @param instance Pointer to a SubGhzBlockGeneric* instance * @param fix Fix part of the parcel * @param hop Hop encrypted part of the parcel * @param keystore Pointer to a SubGhzKeystore* instance * @param manufacture_name * @return true on successful search */ static uint8_t subghz_protocol_star_line_check_remote_controller_selector( SubGhzBlockGeneric* instance, uint32_t fix, uint32_t hop, SubGhzKeystore* keystore, const char** manufacture_name) { uint16_t end_serial = (uint16_t)(fix & 0xFF); uint8_t btn = (uint8_t)(fix >> 24); uint32_t decrypt = 0; uint64_t man_normal_learning; bool mf_not_set = false; // TODO: // if(mfname == 0x0) { // mfname = ""; // } const char* mfname = keystore->mfname; if(strcmp(mfname, "Unknown") == 0) { return 1; } else if(strcmp(mfname, "") == 0) { mf_not_set = true; } for M_EACH(manufacture_code, *subghz_keystore_get_data(keystore), SubGhzKeyArray_t) { if(mf_not_set || (strcmp(furi_string_get_cstr(manufacture_code->name), mfname) == 0)) { switch(manufacture_code->type) { case KEELOQ_LEARNING_SIMPLE: // Simple Learning decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key); if(subghz_protocol_star_line_check_decrypt( instance, decrypt, btn, end_serial)) { *manufacture_name = furi_string_get_cstr(manufacture_code->name); keystore->mfname = *manufacture_name; return 1; } break; case KEELOQ_LEARNING_NORMAL: // Normal Learning // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37 man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning); if(subghz_protocol_star_line_check_decrypt( instance, decrypt, btn, end_serial)) { *manufacture_name = furi_string_get_cstr(manufacture_code->name); keystore->mfname = *manufacture_name; return 1; } break; case KEELOQ_LEARNING_UNKNOWN: // Simple Learning decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key); if(subghz_protocol_star_line_check_decrypt( instance, decrypt, btn, end_serial)) { *manufacture_name = furi_string_get_cstr(manufacture_code->name); keystore->mfname = *manufacture_name; keystore->kl_type = 1; return 1; } // Check for mirrored man uint64_t man_rev = 0; uint64_t man_rev_byte = 0; for(uint8_t i = 0; i < 64; i += 8) { man_rev_byte = (uint8_t)(manufacture_code->key >> i); man_rev = man_rev | man_rev_byte << (56 - i); } decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev); if(subghz_protocol_star_line_check_decrypt( instance, decrypt, btn, end_serial)) { *manufacture_name = furi_string_get_cstr(manufacture_code->name); keystore->mfname = *manufacture_name; keystore->kl_type = 1; return 1; } //########################### // Normal Learning // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37 man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning); if(subghz_protocol_star_line_check_decrypt( instance, decrypt, btn, end_serial)) { *manufacture_name = furi_string_get_cstr(manufacture_code->name); keystore->mfname = *manufacture_name; keystore->kl_type = 2; return 1; } // Check for mirrored man man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, man_rev); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning); if(subghz_protocol_star_line_check_decrypt( instance, decrypt, btn, end_serial)) { *manufacture_name = furi_string_get_cstr(manufacture_code->name); keystore->mfname = *manufacture_name; keystore->kl_type = 2; return 1; } break; } } } *manufacture_name = "Unknown"; keystore->mfname = "Unknown"; instance->cnt = 0; return 0; } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance * @param keystore Pointer to a SubGhzKeystore* instance * @param manufacture_name */ static void subghz_protocol_star_line_check_remote_controller( SubGhzBlockGeneric* instance, SubGhzKeystore* keystore, const char** manufacture_name) { uint64_t key = subghz_protocol_blocks_reverse_key(instance->data, instance->data_count_bit); uint32_t key_fix = key >> 32; uint32_t key_hop = key & 0x00000000ffffffff; subghz_protocol_star_line_check_remote_controller_selector( instance, key_fix, key_hop, keystore, manufacture_name); instance->serial = key_fix & 0x00FFFFFF; instance->btn = key_fix >> 24; } uint8_t subghz_protocol_decoder_star_line_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderStarLine* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } SubGhzProtocolStatus subghz_protocol_decoder_star_line_serialize( void* context, FlipperFormat* flipper_format, SubGhzRadioPreset* preset) { furi_assert(context); SubGhzProtocolDecoderStarLine* instance = context; subghz_protocol_star_line_check_remote_controller( &instance->generic, instance->keystore, &instance->manufacture_name); SubGhzProtocolStatus ret = subghz_block_generic_serialize(&instance->generic, flipper_format, preset); if((ret == SubGhzProtocolStatusOk) && !flipper_format_write_string_cstr( flipper_format, "Manufacture", instance->manufacture_name)) { FURI_LOG_E(TAG, "Unable to add manufacture name"); ret = SubGhzProtocolStatusErrorParserOthers; } if((ret == SubGhzProtocolStatusOk) && instance->generic.data_count_bit != subghz_protocol_star_line_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); ret = SubGhzProtocolStatusErrorParserOthers; } return ret; } SubGhzProtocolStatus subghz_protocol_decoder_star_line_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderStarLine* instance = context; SubGhzProtocolStatus res = SubGhzProtocolStatusError; do { if(SubGhzProtocolStatusOk != subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } // Read manufacturer from file if(flipper_format_read_string( flipper_format, "Manufacture", instance->manufacture_from_file)) { instance->manufacture_name = furi_string_get_cstr(instance->manufacture_from_file); instance->keystore->mfname = instance->manufacture_name; } else { FURI_LOG_D(TAG, "DECODER: Missing Manufacture"); } res = SubGhzProtocolStatusOk; } while(false); return res; } void subghz_protocol_decoder_star_line_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderStarLine* instance = context; subghz_protocol_star_line_check_remote_controller( &instance->generic, instance->keystore, &instance->manufacture_name); uint32_t code_found_hi = instance->generic.data >> 32; uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key( instance->generic.data, instance->generic.data_count_bit); uint32_t code_found_reverse_hi = code_found_reverse >> 32; uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; furi_string_cat_printf( output, "%s %dbit\r\n" "Key:%08lX%08lX\r\n" "Fix:0x%08lX Cnt:%04lX\r\n" "Hop:0x%08lX Btn:%02X\r\n" "MF:%s\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, code_found_hi, code_found_lo, code_found_reverse_hi, instance->generic.cnt, code_found_reverse_lo, instance->generic.btn, instance->manufacture_name); }