#include #include #include #include #include #include #include typedef struct { // +-----x // | // | // y uint8_t x; uint8_t y; } Point; typedef enum { GameStateLife, // https://melmagazine.com/en-us/story/snake-nokia-6110-oral-history-taneli-armanto // Armanto: While testing the early versions of the game, I noticed it was hard // to control the snake upon getting close to and edge but not crashing — especially // in the highest speed levels. I wanted the highest level to be as fast as I could // possibly make the device "run," but on the other hand, I wanted to be friendly // and help the player manage that level. Otherwise it might not be fun to play. So // I implemented a little delay. A few milliseconds of extra time right before // the player crashes, during which she can still change the directions. And if // she does, the game continues. GameStateLastChance, GameStateGameOver, } GameState; // Note: do not change without purpose. Current values are used in smart // orthogonality calculation in `snake_game_get_turn_snake`. typedef enum { DirectionUp, DirectionRight, DirectionDown, DirectionLeft, } Direction; #define MAX_SNAKE_LEN 128*64/4 typedef struct { Point points[MAX_SNAKE_LEN]; uint16_t len; Direction currentMovement; Direction nextMovement; // if backward of currentMovement, ignore Point fruit; GameState state; } SnakeState; typedef enum { EventTypeTick, EventTypeKey, } EventType; typedef struct { EventType type; InputEvent input; } SnakeEvent; const NotificationSequence sequence_fail = { &message_vibro_on, &message_note_ds4, &message_delay_10, &message_sound_off, &message_delay_10, &message_note_ds4, &message_delay_10, &message_sound_off, &message_delay_10, &message_note_ds4, &message_delay_10, &message_sound_off, &message_delay_10, &message_vibro_off, NULL, }; const NotificationSequence sequence_eat = { &message_note_c7, &message_delay_50, &message_sound_off, NULL, }; static void snake_game_render_callback(Canvas* const canvas, void* ctx) { const SnakeState* snake_state = acquire_mutex((ValueMutex*)ctx, 25); if(snake_state == NULL) { return; } // Before the function is called, the state is set with the canvas_reset(canvas) // Frame canvas_draw_frame(canvas, 0, 0, 128, 64); // Fruit Point f = snake_state->fruit; f.x = f.x * 4 + 1; f.y = f.y * 4 + 1; canvas_draw_rframe(canvas, f.x, f.y, 6, 6, 2); // Snake for(uint16_t i = 0; i < snake_state->len; i++) { Point p = snake_state->points[i]; p.x = p.x * 4 + 2; p.y = p.y * 4 + 2; canvas_draw_box(canvas, p.x, p.y, 4, 4); } // Game Over banner if(snake_state->state == GameStateGameOver) { // Screen is 128x64 px canvas_set_color(canvas, ColorWhite); canvas_draw_box(canvas, 34, 20, 62, 24); canvas_set_color(canvas, ColorBlack); canvas_draw_frame(canvas, 34, 20, 62, 24); canvas_set_font(canvas, FontPrimary); canvas_draw_str(canvas, 37, 31, "Game Over"); canvas_set_font(canvas, FontSecondary); char buffer[12]; snprintf(buffer, sizeof(buffer), "Score: %u", snake_state->len - 7); canvas_draw_str_aligned(canvas, 64, 41, AlignCenter, AlignBottom, buffer); } release_mutex((ValueMutex*)ctx, snake_state); } static void snake_game_input_callback(InputEvent* input_event, FuriMessageQueue* event_queue) { furi_assert(event_queue); SnakeEvent event = {.type = EventTypeKey, .input = *input_event}; furi_message_queue_put(event_queue, &event, FuriWaitForever); } static void snake_game_update_timer_callback(FuriMessageQueue* event_queue) { furi_assert(event_queue); SnakeEvent event = {.type = EventTypeTick}; furi_message_queue_put(event_queue, &event, 0); } static void snake_game_init_game(SnakeState* const snake_state) { Point p[] = {{8, 6}, {7, 6}, {6, 6}, {5, 6}, {4, 6}, {3, 6}, {2, 6}}; memcpy(snake_state->points, p, sizeof(p)); snake_state->len = 7; snake_state->currentMovement = DirectionRight; snake_state->nextMovement = DirectionRight; Point f = {18, 6}; snake_state->fruit = f; snake_state->state = GameStateLife; } static Point snake_game_get_new_fruit(SnakeState const* const snake_state) { // 1 bit for each point on the playing field where the snake can turn // and where the fruit can appear uint16_t buffer[8]; memset(buffer, 0, sizeof(buffer)); uint8_t empty = 8 * 16; for(uint16_t i = 0; i < snake_state->len; i++) { Point p = snake_state->points[i]; if(p.x % 2 != 0 || p.y % 2 != 0) { continue; } p.x /= 2; p.y /= 2; buffer[p.y] |= 1 << p.x; empty--; } // Bit set if snake use that playing field uint16_t newFruit = rand() % empty; // Skip random number of _empty_ fields for(uint8_t y = 0; y < 8; y++) { for(uint16_t x = 0, mask = 1; x < 16; x += 1, mask <<= 1) { if((buffer[y] & mask) == 0) { if(newFruit == 0) { Point p = { .x = x * 2, .y = y * 2, }; return p; } newFruit--; } } } // We will never be here Point p = {0, 0}; return p; } static bool snake_game_collision_with_frame(Point const next_step) { // if x == 0 && currentMovement == left then x - 1 == 255 , // so check only x > right border return next_step.x > 30 || next_step.y > 14; } static bool snake_game_collision_with_tail(SnakeState const* const snake_state, Point const next_step) { for(uint16_t i = 0; i < snake_state->len; i++) { Point p = snake_state->points[i]; if(p.x == next_step.x && p.y == next_step.y) { return true; } } return false; } static Direction snake_game_get_turn_snake(SnakeState const* const snake_state) { // Sum of two `Direction` lies between 0 and 6, odd values indicate orthogonality. bool is_orthogonal = (snake_state->currentMovement + snake_state->nextMovement) % 2 == 1; return is_orthogonal ? snake_state->nextMovement : snake_state->currentMovement; } static Point snake_game_get_next_step(SnakeState const* const snake_state) { Point next_step = snake_state->points[0]; switch(snake_state->currentMovement) { // +-----x // | // | // y case DirectionUp: next_step.y--; break; case DirectionRight: next_step.x++; break; case DirectionDown: next_step.y++; break; case DirectionLeft: next_step.x--; break; } return next_step; } static void snake_game_move_snake(SnakeState* const snake_state, Point const next_step) { memmove(snake_state->points + 1, snake_state->points, snake_state->len * sizeof(Point)); snake_state->points[0] = next_step; } static void snake_game_process_game_step(SnakeState* const snake_state, NotificationApp* notification) { if(snake_state->state == GameStateGameOver) { return; } snake_state->currentMovement = snake_game_get_turn_snake(snake_state); Point next_step = snake_game_get_next_step(snake_state); bool crush = snake_game_collision_with_frame(next_step); if(crush) { if(snake_state->state == GameStateLife) { snake_state->state = GameStateLastChance; return; } else if(snake_state->state == GameStateLastChance) { snake_state->state = GameStateGameOver; notification_message_block(notification, &sequence_fail); return; } } else { if(snake_state->state == GameStateLastChance) { snake_state->state = GameStateLife; } } crush = snake_game_collision_with_tail(snake_state, next_step); if(crush) { snake_state->state = GameStateGameOver; notification_message_block(notification, &sequence_fail); return; } bool eatFruit = (next_step.x == snake_state->fruit.x) && (next_step.y == snake_state->fruit.y); if(eatFruit) { snake_state->len++; if(snake_state->len >= MAX_SNAKE_LEN) { snake_state->state = GameStateGameOver; notification_message_block(notification, &sequence_fail); return; } } snake_game_move_snake(snake_state, next_step); if(eatFruit) { snake_state->fruit = snake_game_get_new_fruit(snake_state); notification_message(notification, &sequence_eat); } } int32_t snake_game_app(void* p) { UNUSED(p); srand(DWT->CYCCNT); FuriMessageQueue* event_queue = furi_message_queue_alloc(8, sizeof(SnakeEvent)); SnakeState* snake_state = malloc(sizeof(SnakeState)); snake_game_init_game(snake_state); ValueMutex state_mutex; if(!init_mutex(&state_mutex, snake_state, sizeof(SnakeState))) { FURI_LOG_E("SnakeGame", "cannot create mutex\r\n"); furi_message_queue_free(event_queue); free(snake_state); return 255; } ViewPort* view_port = view_port_alloc(); view_port_draw_callback_set(view_port, snake_game_render_callback, &state_mutex); view_port_input_callback_set(view_port, snake_game_input_callback, event_queue); FuriTimer* timer = furi_timer_alloc(snake_game_update_timer_callback, FuriTimerTypePeriodic, event_queue); furi_timer_start(timer, furi_kernel_get_tick_frequency() / 4); // Open GUI and register view_port Gui* gui = furi_record_open(RECORD_GUI); gui_add_view_port(gui, view_port, GuiLayerFullscreen); NotificationApp* notification = furi_record_open(RECORD_NOTIFICATION); notification_message_block(notification, &sequence_display_backlight_enforce_on); DOLPHIN_DEED(DolphinDeedPluginGameStart); SnakeEvent event; for(bool processing = true; processing;) { FuriStatus event_status = furi_message_queue_get(event_queue, &event, 100); SnakeState* snake_state = (SnakeState*)acquire_mutex_block(&state_mutex); if(event_status == FuriStatusOk) { // press events if(event.type == EventTypeKey) { if(event.input.type == InputTypePress) { switch(event.input.key) { case InputKeyUp: snake_state->nextMovement = DirectionUp; break; case InputKeyDown: snake_state->nextMovement = DirectionDown; break; case InputKeyRight: snake_state->nextMovement = DirectionRight; break; case InputKeyLeft: snake_state->nextMovement = DirectionLeft; break; case InputKeyOk: if(snake_state->state == GameStateGameOver) { snake_game_init_game(snake_state); } break; case InputKeyBack: processing = false; break; } } } else if(event.type == EventTypeTick) { snake_game_process_game_step(snake_state, notification); } } else { // event timeout } view_port_update(view_port); release_mutex(&state_mutex, snake_state); } // Wait for all notifications to be played and return backlight to normal state notification_message_block(notification, &sequence_display_backlight_enforce_auto); furi_timer_free(timer); view_port_enabled_set(view_port, false); gui_remove_view_port(gui, view_port); furi_record_close(RECORD_GUI); furi_record_close(RECORD_NOTIFICATION); view_port_free(view_port); furi_message_queue_free(event_queue); delete_mutex(&state_mutex); free(snake_state); return 0; }