#include "mastercode.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" // protocol MASTERCODE Clemsa MV1/MV12 #define TAG "SubGhzProtocolMastercode" #define DIP_P 0b11 //(+) #define DIP_O 0b10 //(0) #define DIP_N 0b00 //(-) #define DIP_PATTERN "%c%c%c%c%c%c%c%c" #define SHOW_DIP_P(dip, check_dip) \ ((((dip >> 0x0) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0x2) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0x4) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0x6) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0x8) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0xA) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0xC) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0xE) & 0x3) == check_dip) ? '*' : '_') static const SubGhzBlockConst subghz_protocol_mastercode_const = { .te_short = 1072, .te_long = 2145, .te_delta = 150, .min_count_bit_for_found = 36, }; struct SubGhzProtocolDecoderMastercode { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; }; struct SubGhzProtocolEncoderMastercode { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { MastercodeDecoderStepReset = 0, MastercodeDecoderStepSaveDuration, MastercodeDecoderStepCheckDuration, } MastercodeDecoderStep; const SubGhzProtocolDecoder subghz_protocol_mastercode_decoder = { .alloc = subghz_protocol_decoder_mastercode_alloc, .free = subghz_protocol_decoder_mastercode_free, .feed = subghz_protocol_decoder_mastercode_feed, .reset = subghz_protocol_decoder_mastercode_reset, .get_hash_data = subghz_protocol_decoder_mastercode_get_hash_data, .serialize = subghz_protocol_decoder_mastercode_serialize, .deserialize = subghz_protocol_decoder_mastercode_deserialize, .get_string = subghz_protocol_decoder_mastercode_get_string, }; const SubGhzProtocolEncoder subghz_protocol_mastercode_encoder = { .alloc = subghz_protocol_encoder_mastercode_alloc, .free = subghz_protocol_encoder_mastercode_free, .deserialize = subghz_protocol_encoder_mastercode_deserialize, .stop = subghz_protocol_encoder_mastercode_stop, .yield = subghz_protocol_encoder_mastercode_yield, }; const SubGhzProtocol subghz_protocol_mastercode = { .name = SUBGHZ_PROTOCOL_MASTERCODE_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_mastercode_decoder, .encoder = &subghz_protocol_mastercode_encoder, }; void* subghz_protocol_encoder_mastercode_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderMastercode* instance = malloc(sizeof(SubGhzProtocolEncoderMastercode)); instance->base.protocol = &subghz_protocol_mastercode; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 72; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_mastercode_free(void* context) { furi_assert(context); SubGhzProtocolEncoderMastercode* instance = context; free(instance->encoder.upload); free(instance); } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderMastercode instance * @return true On success */ static bool subghz_protocol_encoder_mastercode_get_upload(SubGhzProtocolEncoderMastercode* instance) { furi_assert(instance); size_t index = 0; size_t size_upload = (instance->generic.data_count_bit * 2); if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } for(uint8_t i = instance->generic.data_count_bit; i > 1; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_mastercode_const.te_long); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_mastercode_const.te_short); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_mastercode_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_mastercode_const.te_long); } } if(bit_read(instance->generic.data, 0)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_mastercode_const.te_long); instance->encoder.upload[index++] = level_duration_make( false, (uint32_t)subghz_protocol_mastercode_const.te_short + subghz_protocol_mastercode_const.te_short * 13); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_mastercode_const.te_short); instance->encoder.upload[index++] = level_duration_make( false, (uint32_t)subghz_protocol_mastercode_const.te_long + subghz_protocol_mastercode_const.te_short * 13); } return true; } SubGhzProtocolStatus subghz_protocol_encoder_mastercode_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderMastercode* instance = context; SubGhzProtocolStatus ret = SubGhzProtocolStatusError; do { ret = subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_mastercode_const.min_count_bit_for_found); if(ret != SubGhzProtocolStatusOk) { break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); if(!subghz_protocol_encoder_mastercode_get_upload(instance)) { ret = SubGhzProtocolStatusErrorEncoderGetUpload; break; } instance->encoder.is_running = true; } while(false); return ret; } void subghz_protocol_encoder_mastercode_stop(void* context) { SubGhzProtocolEncoderMastercode* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_mastercode_yield(void* context) { SubGhzProtocolEncoderMastercode* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_mastercode_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderMastercode* instance = malloc(sizeof(SubGhzProtocolDecoderMastercode)); instance->base.protocol = &subghz_protocol_mastercode; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_mastercode_free(void* context) { furi_assert(context); SubGhzProtocolDecoderMastercode* instance = context; free(instance); } void subghz_protocol_decoder_mastercode_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderMastercode* instance = context; instance->decoder.parser_step = MastercodeDecoderStepReset; } void subghz_protocol_decoder_mastercode_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderMastercode* instance = context; switch(instance->decoder.parser_step) { case MastercodeDecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_mastercode_const.te_short * 15) < subghz_protocol_mastercode_const.te_delta * 15)) { instance->decoder.parser_step = MastercodeDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } break; case MastercodeDecoderStepSaveDuration: if(level) { instance->decoder.te_last = duration; instance->decoder.parser_step = MastercodeDecoderStepCheckDuration; } else { instance->decoder.parser_step = MastercodeDecoderStepReset; } break; case MastercodeDecoderStepCheckDuration: if(!level) { if((DURATION_DIFF( instance->decoder.te_last, subghz_protocol_mastercode_const.te_short) < subghz_protocol_mastercode_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_mastercode_const.te_long) < subghz_protocol_mastercode_const.te_delta * 8)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = MastercodeDecoderStepSaveDuration; } else if( (DURATION_DIFF( instance->decoder.te_last, subghz_protocol_mastercode_const.te_long) < subghz_protocol_mastercode_const.te_delta * 8) && (DURATION_DIFF(duration, subghz_protocol_mastercode_const.te_short) < subghz_protocol_mastercode_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = MastercodeDecoderStepSaveDuration; } else if( DURATION_DIFF(duration, subghz_protocol_mastercode_const.te_short * 15) < subghz_protocol_mastercode_const.te_delta * 15) { if((DURATION_DIFF( instance->decoder.te_last, subghz_protocol_mastercode_const.te_short) < subghz_protocol_mastercode_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); } else if((DURATION_DIFF( instance->decoder.te_last, subghz_protocol_mastercode_const.te_long) < subghz_protocol_mastercode_const.te_delta * 8)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); } else { instance->decoder.parser_step = MastercodeDecoderStepReset; } if(instance->decoder.decode_count_bit == subghz_protocol_mastercode_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.parser_step = MastercodeDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } else { instance->decoder.parser_step = MastercodeDecoderStepReset; } } else { instance->decoder.parser_step = MastercodeDecoderStepReset; } break; } } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance */ static void subghz_protocol_mastercode_check_remote_controller(SubGhzBlockGeneric* instance) { instance->serial = (instance->data >> 4) & 0xFFFF; instance->btn = (instance->data >> 2 & 0x03); } uint8_t subghz_protocol_decoder_mastercode_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderMastercode* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } SubGhzProtocolStatus subghz_protocol_decoder_mastercode_serialize( void* context, FlipperFormat* flipper_format, SubGhzRadioPreset* preset) { furi_assert(context); SubGhzProtocolDecoderMastercode* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } SubGhzProtocolStatus subghz_protocol_decoder_mastercode_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderMastercode* instance = context; return subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_mastercode_const.min_count_bit_for_found); } void subghz_protocol_decoder_mastercode_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderMastercode* instance = context; subghz_protocol_mastercode_check_remote_controller(&instance->generic); furi_string_cat_printf( output, "%s %dbit\r\n" "Key:%llX Btn %X\r\n" " +: " DIP_PATTERN "\r\n" " o: " DIP_PATTERN "\r\n" " -: " DIP_PATTERN "\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, (uint64_t)(instance->generic.data), instance->generic.btn, SHOW_DIP_P(instance->generic.serial, DIP_P), SHOW_DIP_P(instance->generic.serial, DIP_O), SHOW_DIP_P(instance->generic.serial, DIP_N)); }