#include "keeloq_common.h" #include #include #define bit(x, n) (((x) >> (n)) & 1) #define g5(x, a, b, c, d, e) \ (bit(x, a) + bit(x, b) * 2 + bit(x, c) * 4 + bit(x, d) * 8 + bit(x, e) * 16) /** Simple Learning Encrypt * @param data - 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter * @param key - manufacture (64bit) * @return keeloq encrypt data */ inline uint32_t subghz_protocol_keeloq_common_encrypt(const uint32_t data, const uint64_t key) { uint32_t x = data, r; for(r = 0; r < 528; r++) x = (x >> 1) ^ ((bit(x, 0) ^ bit(x, 16) ^ (uint32_t)bit(key, r & 63) ^ bit(KEELOQ_NLF, g5(x, 1, 9, 20, 26, 31))) << 31); return x; } /** Simple Learning Decrypt * @param data - keelog encrypt data * @param key - manufacture (64bit) * @return 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter */ inline uint32_t subghz_protocol_keeloq_common_decrypt(const uint32_t data, const uint64_t key) { uint32_t x = data, r; for(r = 0; r < 528; r++) x = (x << 1) ^ bit(x, 31) ^ bit(x, 15) ^ (uint32_t)bit(key, (15 - r) & 63) ^ bit(KEELOQ_NLF, g5(x, 0, 8, 19, 25, 30)); return x; } /** Normal Learning * @param data - serial number (28bit) * @param key - manufacture (64bit) * @return manufacture for this serial number (64bit) */ inline uint64_t subghz_protocol_keeloq_common_normal_learning(uint32_t data, const uint64_t key) { uint32_t k1, k2; data &= 0x0FFFFFFF; data |= 0x20000000; k1 = subghz_protocol_keeloq_common_decrypt(data, key); data &= 0x0FFFFFFF; data |= 0x60000000; k2 = subghz_protocol_keeloq_common_decrypt(data, key); return ((uint64_t)k2 << 32) | k1; // key - shifrovanoya } /** Secure Learning * @param data - serial number (28bit) * @param seed - seed number (32bit) * @param key - manufacture (64bit) * @return manufacture for this serial number (64bit) */ inline uint64_t subghz_protocol_keeloq_common_secure_learning( uint32_t data, uint32_t seed, const uint64_t key) { uint32_t k1, k2; data &= 0x0FFFFFFF; k1 = subghz_protocol_keeloq_common_decrypt(data, key); k2 = subghz_protocol_keeloq_common_decrypt(seed, key); return ((uint64_t)k1 << 32) | k2; } /** Magic_xor_type1 Learning * @param data - serial number (28bit) * @param xor - magic xor (64bit) * @return manufacture for this serial number (64bit) */ inline uint64_t subghz_protocol_keeloq_common_magic_xor_type1_learning(uint32_t data, uint64_t xor) { data &= 0x0FFFFFFF; return (((uint64_t)data << 32) | data) ^ xor; } /** Faac SLH (Spa) Learning * @param seed - seed number (32bit) * @param key - mfkey (64bit) * @return man_learning for this seed number (64bit) */ inline uint64_t subghz_protocol_keeloq_common_faac_learning(const uint32_t seed, const uint64_t key) { uint16_t hs = seed >> 16; const uint16_t ending = 0x544D; uint32_t lsb = (uint32_t)hs << 16 | ending; uint64_t man = (uint64_t)subghz_protocol_keeloq_common_encrypt(seed, key) << 32 | subghz_protocol_keeloq_common_encrypt(lsb, key); return man; } /** Magic_serial_type1 Learning * @param data - serial number (28bit) * @param man - magic man (64bit) * @return manufacture for this serial number (64bit) */ inline uint64_t subghz_protocol_keeloq_common_magic_serial_type1_learning(uint32_t data, uint64_t man) { return (man & 0xFFFFFFFF) | ((uint64_t)data << 40) | ((uint64_t)(((data & 0xff) + ((data >> 8) & 0xFF)) & 0xFF) << 32); } /** Magic_serial_type2 Learning * @param data - btn+serial number (32bit) * @param man - magic man (64bit) * @return manufacture for this serial number (64bit) */ inline uint64_t subghz_protocol_keeloq_common_magic_serial_type2_learning(uint32_t data, uint64_t man) { uint8_t* p = (uint8_t*)&data; uint8_t* m = (uint8_t*)&man; m[7] = p[0]; m[6] = p[1]; m[5] = p[2]; m[4] = p[3]; return man; } /** Magic_serial_type3 Learning * @param data - serial number (24bit) * @param man - magic man (64bit) * @return manufacture for this serial number (64bit) */ inline uint64_t subghz_protocol_keeloq_common_magic_serial_type3_learning(uint32_t data, uint64_t man) { return (man & 0xFFFFFFFFFF000000) | (data & 0xFFFFFF); }