#include "furi_hal_nfc.h" #include #include #include #include #include #include #include #define TAG "FuriHalNfc" static const uint32_t clocks_in_ms = 64 * 1000; osEventFlagsId_t event = NULL; #define EVENT_FLAG_INTERRUPT (1UL << 0) #define EVENT_FLAG_STATE_CHANGED (1UL << 1) #define EVENT_FLAG_STOP (1UL << 2) #define EVENT_FLAG_ALL (EVENT_FLAG_INTERRUPT | EVENT_FLAG_STATE_CHANGED | EVENT_FLAG_STOP) void furi_hal_nfc_init() { ReturnCode ret = rfalNfcInitialize(); if(ret == ERR_NONE) { furi_hal_nfc_start_sleep(); event = osEventFlagsNew(NULL); FURI_LOG_I(TAG, "Init OK"); } else { FURI_LOG_W(TAG, "Initialization failed, RFAL returned: %d", ret); } } bool furi_hal_nfc_is_busy() { return rfalNfcGetState() != RFAL_NFC_STATE_IDLE; } void furi_hal_nfc_field_on() { furi_hal_nfc_exit_sleep(); st25r3916TxRxOn(); } void furi_hal_nfc_field_off() { st25r3916TxRxOff(); furi_hal_nfc_start_sleep(); } void furi_hal_nfc_start_sleep() { rfalLowPowerModeStart(); } void furi_hal_nfc_exit_sleep() { rfalLowPowerModeStop(); } bool furi_hal_nfc_detect(FuriHalNfcDevData* nfc_data, uint32_t timeout) { furi_assert(nfc_data); rfalNfcDevice* dev_list = NULL; uint8_t dev_cnt = 0; bool detected = false; rfalLowPowerModeStop(); rfalNfcState state = rfalNfcGetState(); if(state == RFAL_NFC_STATE_NOTINIT) { rfalNfcInitialize(); } rfalNfcDiscoverParam params; params.compMode = RFAL_COMPLIANCE_MODE_EMV; params.techs2Find = RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F | RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_AP2P | RFAL_NFC_POLL_TECH_ST25TB; params.totalDuration = 1000; params.devLimit = 3; params.wakeupEnabled = false; params.wakeupConfigDefault = true; params.nfcfBR = RFAL_BR_212; params.ap2pBR = RFAL_BR_424; params.maxBR = RFAL_BR_KEEP; params.GBLen = RFAL_NFCDEP_GB_MAX_LEN; params.notifyCb = NULL; uint32_t start = DWT->CYCCNT; rfalNfcDiscover(¶ms); while(true) { rfalNfcWorker(); state = rfalNfcGetState(); if(state == RFAL_NFC_STATE_ACTIVATED) { detected = true; break; } FURI_LOG_T(TAG, "Current state %d", state); if(state == RFAL_NFC_STATE_POLL_ACTIVATION) { start = DWT->CYCCNT; continue; } if(state == RFAL_NFC_STATE_POLL_SELECT) { rfalNfcSelect(0); } if(DWT->CYCCNT - start > timeout * clocks_in_ms) { rfalNfcDeactivate(true); FURI_LOG_T(TAG, "Timeout"); break; } osDelay(1); } rfalNfcGetDevicesFound(&dev_list, &dev_cnt); if(detected) { if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCA) { nfc_data->type = FuriHalNfcTypeA; nfc_data->atqa[0] = dev_list[0].dev.nfca.sensRes.anticollisionInfo; nfc_data->atqa[1] = dev_list[0].dev.nfca.sensRes.platformInfo; nfc_data->sak = dev_list[0].dev.nfca.selRes.sak; uint8_t* cuid_start = dev_list[0].nfcid; if(dev_list[0].nfcidLen == 7) { cuid_start = &dev_list[0].nfcid[3]; } nfc_data->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) | (cuid_start[3]); } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCB) { nfc_data->type = FuriHalNfcTypeB; } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCF) { nfc_data->type = FuriHalNfcTypeF; } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCV) { nfc_data->type = FuriHalNfcTypeV; } if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_RF) { nfc_data->interface = FuriHalNfcInterfaceRf; } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_ISODEP) { nfc_data->interface = FuriHalNfcInterfaceIsoDep; } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_NFCDEP) { nfc_data->interface = FuriHalNfcInterfaceNfcDep; } nfc_data->uid_len = dev_list[0].nfcidLen; memcpy(nfc_data->uid, dev_list[0].nfcid, nfc_data->uid_len); } return detected; } bool furi_hal_nfc_activate_nfca(uint32_t timeout, uint32_t* cuid) { rfalNfcDevice* dev_list; uint8_t dev_cnt = 0; rfalLowPowerModeStop(); rfalNfcState state = rfalNfcGetState(); if(state == RFAL_NFC_STATE_NOTINIT) { rfalNfcInitialize(); } rfalNfcDiscoverParam params = { .compMode = RFAL_COMPLIANCE_MODE_NFC, .techs2Find = RFAL_NFC_POLL_TECH_A, .totalDuration = 1000, .devLimit = 3, .wakeupEnabled = false, .wakeupConfigDefault = true, .nfcfBR = RFAL_BR_212, .ap2pBR = RFAL_BR_424, .maxBR = RFAL_BR_KEEP, .GBLen = RFAL_NFCDEP_GB_MAX_LEN, .notifyCb = NULL, }; uint32_t start = DWT->CYCCNT; rfalNfcDiscover(¶ms); while(state != RFAL_NFC_STATE_ACTIVATED) { rfalNfcWorker(); state = rfalNfcGetState(); FURI_LOG_T(TAG, "Current state %d", state); if(state == RFAL_NFC_STATE_POLL_ACTIVATION) { start = DWT->CYCCNT; continue; } if(state == RFAL_NFC_STATE_POLL_SELECT) { rfalNfcSelect(0); } if(DWT->CYCCNT - start > timeout * clocks_in_ms) { rfalNfcDeactivate(true); FURI_LOG_T(TAG, "Timeout"); return false; } osThreadYield(); } rfalNfcGetDevicesFound(&dev_list, &dev_cnt); // Take first device and set cuid if(cuid) { uint8_t* cuid_start = dev_list[0].nfcid; if(dev_list[0].nfcidLen == 7) { cuid_start = &dev_list[0].nfcid[3]; } *cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) | (cuid_start[3]); FURI_LOG_T(TAG, "Activated tag with cuid: %lX", *cuid); } return true; } bool furi_hal_nfc_listen( uint8_t* uid, uint8_t uid_len, uint8_t* atqa, uint8_t sak, bool activate_after_sak, uint32_t timeout) { rfalNfcState state = rfalNfcGetState(); if(state == RFAL_NFC_STATE_NOTINIT) { rfalNfcInitialize(); } else if(state >= RFAL_NFC_STATE_ACTIVATED) { rfalNfcDeactivate(false); } rfalLowPowerModeStop(); rfalNfcDiscoverParam params = { .compMode = RFAL_COMPLIANCE_MODE_NFC, .techs2Find = RFAL_NFC_LISTEN_TECH_A, .totalDuration = 1000, .devLimit = 1, .wakeupEnabled = false, .wakeupConfigDefault = true, .nfcfBR = RFAL_BR_212, .ap2pBR = RFAL_BR_424, .maxBR = RFAL_BR_KEEP, .GBLen = RFAL_NFCDEP_GB_MAX_LEN, .notifyCb = NULL, .activate_after_sak = activate_after_sak, }; params.lmConfigPA.nfcidLen = uid_len; memcpy(params.lmConfigPA.nfcid, uid, uid_len); params.lmConfigPA.SENS_RES[0] = atqa[0]; params.lmConfigPA.SENS_RES[1] = atqa[1]; params.lmConfigPA.SEL_RES = sak; rfalNfcDiscover(¶ms); uint32_t start = DWT->CYCCNT; while(state != RFAL_NFC_STATE_ACTIVATED) { rfalNfcWorker(); state = rfalNfcGetState(); if(DWT->CYCCNT - start > timeout * clocks_in_ms) { rfalNfcDeactivate(true); return false; } osDelay(1); } return true; } void rfal_interrupt_callback_handler() { osEventFlagsSet(event, EVENT_FLAG_INTERRUPT); } void rfal_state_changed_callback(void* context) { UNUSED(context); osEventFlagsSet(event, EVENT_FLAG_STATE_CHANGED); } void furi_hal_nfc_stop() { if(event) { osEventFlagsSet(event, EVENT_FLAG_STOP); } } bool furi_hal_nfc_emulate_nfca( uint8_t* uid, uint8_t uid_len, uint8_t* atqa, uint8_t sak, FuriHalNfcEmulateCallback callback, void* context, uint32_t timeout) { rfalSetUpperLayerCallback(rfal_interrupt_callback_handler); rfal_set_state_changed_callback(rfal_state_changed_callback); rfalLmConfPA config; config.nfcidLen = uid_len; memcpy(config.nfcid, uid, uid_len); memcpy(config.SENS_RES, atqa, RFAL_LM_SENS_RES_LEN); config.SEL_RES = sak; uint8_t buff_rx[256]; uint16_t buff_rx_size = 256; uint16_t buff_rx_len = 0; uint8_t buff_tx[256]; uint16_t buff_tx_len = 0; uint32_t data_type = FURI_HAL_NFC_TXRX_DEFAULT; rfalLowPowerModeStop(); if(rfalListenStart( RFAL_LM_MASK_NFCA, &config, NULL, NULL, buff_rx, rfalConvBytesToBits(buff_rx_size), &buff_rx_len)) { rfalListenStop(); FURI_LOG_E(TAG, "Failed to start listen mode"); return false; } while(true) { buff_rx_len = 0; buff_tx_len = 0; uint32_t flag = osEventFlagsWait(event, EVENT_FLAG_ALL, osFlagsWaitAny, timeout); if(flag == osFlagsErrorTimeout || flag == EVENT_FLAG_STOP) { break; } bool data_received = false; buff_rx_len = 0; rfalWorker(); rfalLmState state = rfalListenGetState(&data_received, NULL); if(data_received) { rfalTransceiveBlockingRx(); if(nfca_emulation_handler(buff_rx, buff_rx_len, buff_tx, &buff_tx_len)) { if(rfalListenSleepStart( RFAL_LM_STATE_SLEEP_A, buff_rx, rfalConvBytesToBits(buff_rx_size), &buff_rx_len)) { FURI_LOG_E(TAG, "Failed to enter sleep mode"); break; } else { continue; } } if(buff_tx_len) { ReturnCode ret = rfalTransceiveBitsBlockingTx( buff_tx, buff_tx_len, buff_rx, sizeof(buff_rx), &buff_rx_len, data_type, RFAL_FWT_NONE); if(ret) { FURI_LOG_E(TAG, "Tranceive failed with status %d", ret); break; } continue; } if((state == RFAL_LM_STATE_ACTIVE_A || state == RFAL_LM_STATE_ACTIVE_Ax)) { if(callback) { callback(buff_rx, buff_rx_len, buff_tx, &buff_tx_len, &data_type, context); } if(!rfalIsExtFieldOn()) { break; } if(buff_tx_len) { ReturnCode ret = rfalTransceiveBitsBlockingTx( buff_tx, buff_tx_len, buff_rx, sizeof(buff_rx), &buff_rx_len, data_type, RFAL_FWT_NONE); if(ret) { FURI_LOG_E(TAG, "Tranceive failed with status %d", ret); continue; } } else { break; } } } } rfalListenStop(); return true; } ReturnCode furi_hal_nfc_data_exchange( uint8_t* tx_buff, uint16_t tx_len, uint8_t** rx_buff, uint16_t** rx_len, bool deactivate) { furi_assert(rx_buff); furi_assert(rx_len); ReturnCode ret; rfalNfcState state = RFAL_NFC_STATE_ACTIVATED; ret = rfalNfcDataExchangeStart(tx_buff, tx_len, rx_buff, rx_len, 0, RFAL_TXRX_FLAGS_DEFAULT); if(ret != ERR_NONE) { return ret; } uint32_t start = DWT->CYCCNT; while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) { rfalNfcWorker(); state = rfalNfcGetState(); ret = rfalNfcDataExchangeGetStatus(); if(ret == ERR_BUSY) { if(DWT->CYCCNT - start > 1000 * clocks_in_ms) { ret = ERR_TIMEOUT; break; } continue; } else { start = DWT->CYCCNT; } taskYIELD(); } if(deactivate) { rfalNfcDeactivate(false); rfalLowPowerModeStart(); } return ret; } static bool furi_hal_nfc_transparent_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) { furi_assert(tx_rx->nfca_signal); platformDisableIrqCallback(); bool ret = false; // Start transparent mode st25r3916ExecuteCommand(ST25R3916_CMD_TRANSPARENT_MODE); // Reconfigure gpio furi_hal_spi_bus_handle_deinit(&furi_hal_spi_bus_handle_nfc); furi_hal_gpio_init(&gpio_spi_r_sck, GpioModeInput, GpioPullUp, GpioSpeedLow); furi_hal_gpio_init(&gpio_spi_r_miso, GpioModeInput, GpioPullUp, GpioSpeedLow); furi_hal_gpio_init(&gpio_nfc_cs, GpioModeInput, GpioPullUp, GpioSpeedLow); furi_hal_gpio_init(&gpio_spi_r_mosi, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh); furi_hal_gpio_write(&gpio_spi_r_mosi, false); // Send signal nfca_signal_encode(tx_rx->nfca_signal, tx_rx->tx_data, tx_rx->tx_bits / 8, tx_rx->tx_parity); digital_signal_send(tx_rx->nfca_signal->tx_signal, &gpio_spi_r_mosi); furi_hal_gpio_write(&gpio_spi_r_mosi, false); // Configure gpio back to SPI and exit transparent furi_hal_spi_bus_handle_init(&furi_hal_spi_bus_handle_nfc); st25r3916ExecuteCommand(ST25R3916_CMD_UNMASK_RECEIVE_DATA); // Manually wait for interrupt furi_hal_gpio_init(&gpio_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh); st25r3916ClearAndEnableInterrupts(ST25R3916_IRQ_MASK_RXE); uint32_t irq = 0; uint8_t rxe = 0; uint32_t start = DWT->CYCCNT; while(true) { if(furi_hal_gpio_read(&gpio_rfid_pull) == true) { st25r3916ReadRegister(ST25R3916_REG_IRQ_MAIN, &rxe); if(rxe & (1 << 4)) { irq = 1; break; } } uint32_t timeout = DWT->CYCCNT - start; if(timeout / furi_hal_delay_instructions_per_microsecond() > timeout_ms * 1000) { FURI_LOG_D(TAG, "Interrupt waiting timeout"); break; } } if(irq) { uint8_t fifo_stat[2]; st25r3916ReadMultipleRegisters( ST25R3916_REG_FIFO_STATUS1, fifo_stat, ST25R3916_FIFO_STATUS_LEN); uint16_t len = ((((uint16_t)fifo_stat[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >> ST25R3916_REG_FIFO_STATUS2_fifo_b_shift) << RFAL_BITS_IN_BYTE); len |= (((uint16_t)fifo_stat[0]) & 0x00FFU); uint8_t rx[100]; st25r3916ReadFifo(rx, len); tx_rx->rx_bits = len * 8; memcpy(tx_rx->rx_data, rx, len); ret = true; } else { FURI_LOG_E(TAG, "Timeout error"); ret = false; } st25r3916ClearInterrupts(); platformEnableIrqCallback(); return ret; } static uint32_t furi_hal_nfc_tx_rx_get_flag(FuriHalNfcTxRxType type) { uint32_t flags = 0; if(type == FuriHalNfcTxRxTypeRxNoCrc) { flags = RFAL_TXRX_FLAGS_CRC_RX_KEEP; } else if(type == FuriHalNfcTxRxTypeRxKeepPar) { flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP | RFAL_TXRX_FLAGS_PAR_RX_KEEP; } else if(type == FuriHalNfcTxRxTypeRaw) { flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP | RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE; } else if(type == FuriHalNfcTxRxTypeRxRaw) { flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP | RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE; } return flags; } static uint16_t furi_hal_nfc_data_and_parity_to_bitstream( uint8_t* data, uint16_t len, uint8_t* parity, uint8_t* out) { furi_assert(data); furi_assert(out); uint8_t next_par_bit = 0; uint16_t curr_bit_pos = 0; for(uint16_t i = 0; i < len; i++) { next_par_bit = FURI_BIT(parity[i / 8], 7 - (i % 8)); if(curr_bit_pos % 8 == 0) { out[curr_bit_pos / 8] = data[i]; curr_bit_pos += 8; out[curr_bit_pos / 8] = next_par_bit; curr_bit_pos++; } else { out[curr_bit_pos / 8] |= data[i] << curr_bit_pos % 8; out[curr_bit_pos / 8 + 1] = data[i] >> (8 - curr_bit_pos % 8); out[curr_bit_pos / 8 + 1] |= next_par_bit << curr_bit_pos % 8; curr_bit_pos += 9; } } return curr_bit_pos; } uint16_t furi_hal_nfc_bitstream_to_data_and_parity( uint8_t* in_buff, uint16_t in_buff_bits, uint8_t* out_data, uint8_t* out_parity) { if(in_buff_bits % 9 != 0) { return 0; } uint8_t curr_byte = 0; uint16_t bit_processed = 0; memset(out_parity, 0, in_buff_bits / 9); while(bit_processed < in_buff_bits) { out_data[curr_byte] = in_buff[bit_processed / 8] >> bit_processed % 8; out_data[curr_byte] |= in_buff[bit_processed / 8 + 1] << (8 - bit_processed % 8); out_parity[curr_byte / 8] |= FURI_BIT(in_buff[bit_processed / 8 + 1], bit_processed % 8) << (7 - curr_byte % 8); bit_processed += 9; curr_byte++; } return curr_byte; } bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) { furi_assert(tx_rx); ReturnCode ret; rfalNfcState state = RFAL_NFC_STATE_ACTIVATED; uint8_t temp_tx_buff[FURI_HAL_NFC_DATA_BUFF_SIZE] = {}; uint16_t temp_tx_bits = 0; uint8_t* temp_rx_buff = NULL; uint16_t* temp_rx_bits = NULL; if(tx_rx->tx_rx_type == FuriHalNfcTxRxTransparent) { return furi_hal_nfc_transparent_tx_rx(tx_rx, timeout_ms); } // Prepare data for FIFO if necessary uint32_t flags = furi_hal_nfc_tx_rx_get_flag(tx_rx->tx_rx_type); if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) { temp_tx_bits = furi_hal_nfc_data_and_parity_to_bitstream( tx_rx->tx_data, tx_rx->tx_bits / 8, tx_rx->tx_parity, temp_tx_buff); ret = rfalNfcDataExchangeCustomStart( temp_tx_buff, temp_tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags); } else { ret = rfalNfcDataExchangeCustomStart( tx_rx->tx_data, tx_rx->tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags); } if(ret != ERR_NONE) { FURI_LOG_E(TAG, "Failed to start data exchange"); return false; } uint32_t start = DWT->CYCCNT; while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) { rfalNfcWorker(); state = rfalNfcGetState(); ret = rfalNfcDataExchangeGetStatus(); if(ret == ERR_BUSY) { if(DWT->CYCCNT - start > timeout_ms * clocks_in_ms) { FURI_LOG_D(TAG, "Timeout during data exchange"); return false; } continue; } else { start = DWT->CYCCNT; } osDelay(1); } if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw || tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRxRaw) { tx_rx->rx_bits = 8 * furi_hal_nfc_bitstream_to_data_and_parity( temp_rx_buff, *temp_rx_bits, tx_rx->rx_data, tx_rx->rx_parity); } else { memcpy(tx_rx->rx_data, temp_rx_buff, MIN(*temp_rx_bits / 8, FURI_HAL_NFC_DATA_BUFF_SIZE)); tx_rx->rx_bits = *temp_rx_bits; } return true; } ReturnCode furi_hal_nfc_exchange_full( uint8_t* tx_buff, uint16_t tx_len, uint8_t* rx_buff, uint16_t rx_cap, uint16_t* rx_len) { ReturnCode err; uint8_t* part_buff; uint16_t* part_len_bits; uint16_t part_len_bytes; err = furi_hal_nfc_data_exchange(tx_buff, tx_len, &part_buff, &part_len_bits, false); part_len_bytes = *part_len_bits / 8; if(part_len_bytes > rx_cap) { return ERR_OVERRUN; } memcpy(rx_buff, part_buff, part_len_bytes); *rx_len = part_len_bytes; while(err == ERR_NONE && rx_buff[0] == 0xAF) { err = furi_hal_nfc_data_exchange(rx_buff, 1, &part_buff, &part_len_bits, false); part_len_bytes = *part_len_bits / 8; if(part_len_bytes > rx_cap - *rx_len) { return ERR_OVERRUN; } if(part_len_bytes == 0) { return ERR_PROTO; } memcpy(rx_buff + *rx_len, part_buff + 1, part_len_bytes - 1); *rx_buff = *part_buff; *rx_len += part_len_bytes - 1; } return err; } void furi_hal_nfc_sleep() { rfalNfcDeactivate(false); rfalLowPowerModeStart(); }