#include #include #include #include #include #include #include #include #define TAG "FuriHalCrypto" #define ENCLAVE_FACTORY_KEY_SLOTS 10 #define ENCLAVE_SIGNATURE_SIZE 16 #define CRYPTO_BLK_LEN (4 * sizeof(uint32_t)) #define CRYPTO_TIMEOUT_US (1000000) #define CRYPTO_MODE_ENCRYPT 0U #define CRYPTO_MODE_INIT (AES_CR_MODE_0) #define CRYPTO_MODE_DECRYPT (AES_CR_MODE_1) #define CRYPTO_MODE_DECRYPT_INIT (AES_CR_MODE_0 | AES_CR_MODE_1) #define CRYPTO_DATATYPE_32B 0U #define CRYPTO_KEYSIZE_256B (AES_CR_KEYSIZE) #define CRYPTO_AES_CBC (AES_CR_CHMOD_0) #define CRYPTO_AES_CTR (AES_CR_CHMOD_1) #define CRYPTO_CTR_IV_LEN (12U) #define CRYPTO_CTR_CTR_LEN (4U) #define CRYPTO_AES_GCM (AES_CR_CHMOD_1 | AES_CR_CHMOD_0) #define CRYPTO_GCM_IV_LEN (12U) #define CRYPTO_GCM_CTR_LEN (4U) #define CRYPTO_GCM_TAG_LEN (16U) #define CRYPTO_GCM_PH_INIT (0x0U << AES_CR_GCMPH_Pos) #define CRYPTO_GCM_PH_HEADER (AES_CR_GCMPH_0) #define CRYPTO_GCM_PH_PAYLOAD (AES_CR_GCMPH_1) #define CRYPTO_GCM_PH_FINAL (AES_CR_GCMPH_1 | AES_CR_GCMPH_0) static FuriMutex* furi_hal_crypto_mutex = NULL; static bool furi_hal_crypto_mode_init_done = false; static const uint8_t enclave_signature_iv[ENCLAVE_FACTORY_KEY_SLOTS][16] = { {0xac, 0x5d, 0x68, 0xb8, 0x79, 0x74, 0xfc, 0x7f, 0x45, 0x02, 0x82, 0xf1, 0x48, 0x7e, 0x75, 0x8a}, {0x38, 0xe6, 0x6a, 0x90, 0x5e, 0x5b, 0x8a, 0xa6, 0x70, 0x30, 0x04, 0x72, 0xc2, 0x42, 0xea, 0xaf}, {0x73, 0xd5, 0x8e, 0xfb, 0x0f, 0x4b, 0xa9, 0x79, 0x0f, 0xde, 0x0e, 0x53, 0x44, 0x7d, 0xaa, 0xfd}, {0x3c, 0x9a, 0xf4, 0x43, 0x2b, 0xfe, 0xea, 0xae, 0x8c, 0xc6, 0xd1, 0x60, 0xd2, 0x96, 0x64, 0xa9}, {0x10, 0xac, 0x7b, 0x63, 0x03, 0x7f, 0x43, 0x18, 0xec, 0x9d, 0x9c, 0xc4, 0x01, 0xdc, 0x35, 0xa7}, {0x26, 0x21, 0x64, 0xe6, 0xd0, 0xf2, 0x47, 0x49, 0xdc, 0x36, 0xcd, 0x68, 0x0c, 0x91, 0x03, 0x44}, {0x7a, 0xbd, 0xce, 0x9c, 0x24, 0x7a, 0x2a, 0xb1, 0x3c, 0x4f, 0x5a, 0x7d, 0x80, 0x3e, 0xfc, 0x0d}, {0xcd, 0xdd, 0xd3, 0x02, 0x85, 0x65, 0x43, 0x83, 0xf9, 0xac, 0x75, 0x2f, 0x21, 0xef, 0x28, 0x6b}, {0xab, 0x73, 0x70, 0xe8, 0xe2, 0x56, 0x0f, 0x58, 0xab, 0x29, 0xa5, 0xb1, 0x13, 0x47, 0x5e, 0xe8}, {0x4f, 0x3c, 0x43, 0x77, 0xde, 0xed, 0x79, 0xa1, 0x8d, 0x4c, 0x1f, 0xfd, 0xdb, 0x96, 0x87, 0x2e}, }; static const uint8_t enclave_signature_input[ENCLAVE_FACTORY_KEY_SLOTS][ENCLAVE_SIGNATURE_SIZE] = { {0x9f, 0x5c, 0xb1, 0x43, 0x17, 0x53, 0x18, 0x8c, 0x66, 0x3d, 0x39, 0x45, 0x90, 0x13, 0xa9, 0xde}, {0xc5, 0x98, 0xe9, 0x17, 0xb8, 0x97, 0x9e, 0x03, 0x33, 0x14, 0x13, 0x8f, 0xce, 0x74, 0x0d, 0x54}, {0x34, 0xba, 0x99, 0x59, 0x9f, 0x70, 0x67, 0xe9, 0x09, 0xee, 0x64, 0x0e, 0xb3, 0xba, 0xfb, 0x75}, {0xdc, 0xfa, 0x6c, 0x9a, 0x6f, 0x0a, 0x3e, 0xdc, 0x42, 0xf6, 0xae, 0x0d, 0x3c, 0xf7, 0x83, 0xaf}, {0xea, 0x2d, 0xe3, 0x1f, 0x02, 0x99, 0x1a, 0x7e, 0x6d, 0x93, 0x4c, 0xb5, 0x42, 0xf0, 0x7a, 0x9b}, {0x53, 0x5e, 0x04, 0xa2, 0x49, 0xa0, 0x73, 0x49, 0x56, 0xb0, 0x88, 0x8c, 0x12, 0xa0, 0xe4, 0x18}, {0x7d, 0xa7, 0xc5, 0x21, 0x7f, 0x12, 0x95, 0xdd, 0x4d, 0x77, 0x01, 0xfa, 0x71, 0x88, 0x2b, 0x7f}, {0xdc, 0x9b, 0xc5, 0xa7, 0x6b, 0x84, 0x5c, 0x37, 0x7c, 0xec, 0x05, 0xa1, 0x9f, 0x91, 0x17, 0x3b}, {0xea, 0xcf, 0xd9, 0x9b, 0x86, 0xcd, 0x2b, 0x43, 0x54, 0x45, 0x82, 0xc6, 0xfe, 0x73, 0x1a, 0x1a}, {0x77, 0xb8, 0x1b, 0x90, 0xb4, 0xb7, 0x32, 0x76, 0x8f, 0x8a, 0x57, 0x06, 0xc7, 0xdd, 0x08, 0x90}, }; static const uint8_t enclave_signature_expected[ENCLAVE_FACTORY_KEY_SLOTS][ENCLAVE_SIGNATURE_SIZE] = { {0xe9, 0x9a, 0xce, 0xe9, 0x4d, 0xe1, 0x7f, 0x55, 0xcb, 0x8a, 0xbf, 0xf2, 0x4d, 0x98, 0x27, 0x67}, {0x34, 0x27, 0xa7, 0xea, 0xa8, 0x98, 0x66, 0x9b, 0xed, 0x43, 0xd3, 0x93, 0xb5, 0xa2, 0x87, 0x8e}, {0x6c, 0xf3, 0x01, 0x78, 0x53, 0x1b, 0x11, 0x32, 0xf0, 0x27, 0x2f, 0xe3, 0x7d, 0xa6, 0xe2, 0xfd}, {0xdf, 0x7f, 0x37, 0x65, 0x2f, 0xdb, 0x7c, 0xcf, 0x5b, 0xb6, 0xe4, 0x9c, 0x63, 0xc5, 0x0f, 0xe0}, {0x9b, 0x5c, 0xee, 0x44, 0x0e, 0xd1, 0xcb, 0x5f, 0x28, 0x9f, 0x12, 0x17, 0x59, 0x64, 0x40, 0xbb}, {0x94, 0xc2, 0x09, 0x98, 0x62, 0xa7, 0x2b, 0x93, 0xed, 0x36, 0x1f, 0x10, 0xbc, 0x26, 0xbd, 0x41}, {0x4d, 0xb2, 0x2b, 0xc5, 0x96, 0x47, 0x61, 0xf4, 0x16, 0xe0, 0x81, 0xc3, 0x8e, 0xb9, 0x9c, 0x9b}, {0xc3, 0x6b, 0x83, 0x55, 0x90, 0x38, 0x0f, 0xea, 0xd1, 0x65, 0xbf, 0x32, 0x4f, 0x8e, 0x62, 0x5b}, {0x8d, 0x5e, 0x27, 0xbc, 0x14, 0x4f, 0x08, 0xa8, 0x2b, 0x14, 0x89, 0x5e, 0xdf, 0x77, 0x04, 0x31}, {0xc9, 0xf7, 0x03, 0xf1, 0x6c, 0x65, 0xad, 0x49, 0x74, 0xbe, 0x00, 0x54, 0xfd, 0xa6, 0x9c, 0x32}, }; void furi_hal_crypto_init() { furi_hal_crypto_mutex = furi_mutex_alloc(FuriMutexTypeNormal); FURI_LOG_I(TAG, "Init OK"); } static bool furi_hal_crypto_generate_unique_keys(uint8_t start_slot, uint8_t end_slot) { FuriHalCryptoKey key; uint8_t key_data[32]; FURI_LOG_I(TAG, "Generating keys %u..%u", start_slot, end_slot); for(uint8_t slot = start_slot; slot <= end_slot; slot++) { key.type = FuriHalCryptoKeyTypeSimple; key.size = FuriHalCryptoKeySize256; key.data = key_data; furi_hal_random_fill_buf(key_data, 32); if(!furi_hal_crypto_enclave_store_key(&key, &slot)) { FURI_LOG_E(TAG, "Error writing key to slot %u", slot); return false; } } return true; } bool furi_hal_crypto_enclave_ensure_key(uint8_t key_slot) { uint8_t keys_nb = 0; uint8_t valid_keys_nb = 0; uint8_t last_valid_slot = ENCLAVE_FACTORY_KEY_SLOTS; uint8_t empty_iv[16] = {0}; furi_hal_crypto_enclave_verify(&keys_nb, &valid_keys_nb); if(key_slot <= ENCLAVE_FACTORY_KEY_SLOTS) { // It's a factory key if(key_slot > keys_nb) return false; } else { // Unique key if(keys_nb < ENCLAVE_FACTORY_KEY_SLOTS) // Some factory keys are missing return false; for(uint8_t i = key_slot; i > ENCLAVE_FACTORY_KEY_SLOTS; i--) { if(furi_hal_crypto_enclave_load_key(i, empty_iv)) { last_valid_slot = i; furi_hal_crypto_enclave_unload_key(i); break; } } if(last_valid_slot == key_slot) return true; else // Generate missing unique keys return furi_hal_crypto_generate_unique_keys(last_valid_slot + 1, key_slot); } return true; } bool furi_hal_crypto_enclave_verify(uint8_t* keys_nb, uint8_t* valid_keys_nb) { furi_assert(keys_nb); furi_assert(valid_keys_nb); uint8_t keys = 0; uint8_t keys_valid = 0; uint8_t buffer[ENCLAVE_SIGNATURE_SIZE]; for(size_t key_slot = 0; key_slot < ENCLAVE_FACTORY_KEY_SLOTS; key_slot++) { if(furi_hal_crypto_enclave_load_key(key_slot + 1, enclave_signature_iv[key_slot])) { keys++; if(furi_hal_crypto_encrypt( enclave_signature_input[key_slot], buffer, ENCLAVE_SIGNATURE_SIZE)) { keys_valid += memcmp(buffer, enclave_signature_expected[key_slot], ENCLAVE_SIGNATURE_SIZE) == 0; } furi_hal_crypto_enclave_unload_key(key_slot + 1); } } *keys_nb = keys; *valid_keys_nb = keys_valid; if(*valid_keys_nb == ENCLAVE_FACTORY_KEY_SLOTS) return true; else return false; } bool furi_hal_crypto_enclave_store_key(FuriHalCryptoKey* key, uint8_t* slot) { furi_assert(key); furi_assert(slot); furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk); if(!furi_hal_bt_is_alive()) { return false; } SHCI_C2_FUS_StoreUsrKey_Cmd_Param_t pParam; size_t key_data_size = 0; if(key->type == FuriHalCryptoKeyTypeMaster) { pParam.KeyType = KEYTYPE_MASTER; } else if(key->type == FuriHalCryptoKeyTypeSimple) { pParam.KeyType = KEYTYPE_SIMPLE; } else if(key->type == FuriHalCryptoKeyTypeEncrypted) { pParam.KeyType = KEYTYPE_ENCRYPTED; key_data_size += 12; } else { furi_crash("Incorrect key type"); } if(key->size == FuriHalCryptoKeySize128) { pParam.KeySize = KEYSIZE_16; key_data_size += 16; } else if(key->size == FuriHalCryptoKeySize256) { pParam.KeySize = KEYSIZE_32; key_data_size += 32; } else { furi_crash("Incorrect key size"); } memcpy(pParam.KeyData, key->data, key_data_size); SHCI_CmdStatus_t shci_state = SHCI_C2_FUS_StoreUsrKey(&pParam, slot); furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk); return (shci_state == SHCI_Success); } static void crypto_key_init(uint32_t* key, uint32_t* iv) { CLEAR_BIT(AES1->CR, AES_CR_EN); MODIFY_REG( AES1->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, CRYPTO_DATATYPE_32B | CRYPTO_KEYSIZE_256B | CRYPTO_AES_CBC); if(key != NULL) { AES1->KEYR7 = key[0]; AES1->KEYR6 = key[1]; AES1->KEYR5 = key[2]; AES1->KEYR4 = key[3]; AES1->KEYR3 = key[4]; AES1->KEYR2 = key[5]; AES1->KEYR1 = key[6]; AES1->KEYR0 = key[7]; } AES1->IVR3 = iv[0]; AES1->IVR2 = iv[1]; AES1->IVR1 = iv[2]; AES1->IVR0 = iv[3]; } static bool furi_hal_crypto_wait_flag(uint32_t flag) { FuriHalCortexTimer timer = furi_hal_cortex_timer_get(CRYPTO_TIMEOUT_US); while(!READ_BIT(AES1->SR, flag)) { if(furi_hal_cortex_timer_is_expired(timer)) { return false; } } return true; } static bool crypto_process_block(uint32_t* in, uint32_t* out, uint8_t blk_len) { furi_check((blk_len <= 4) && (blk_len > 0)); for(uint8_t i = 0; i < 4; i++) { if(i < blk_len) { AES1->DINR = in[i]; } else { AES1->DINR = 0; } } if(!furi_hal_crypto_wait_flag(AES_SR_CCF)) { return false; } SET_BIT(AES1->CR, AES_CR_CCFC); uint32_t out_temp[4]; for(uint8_t i = 0; i < 4; i++) { out_temp[i] = AES1->DOUTR; } memcpy(out, out_temp, blk_len * sizeof(uint32_t)); return true; } bool furi_hal_crypto_enclave_load_key(uint8_t slot, const uint8_t* iv) { furi_assert(slot > 0 && slot <= 100); furi_assert(furi_hal_crypto_mutex); furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk); furi_hal_bus_enable(FuriHalBusAES1); if(!furi_hal_bt_is_alive()) { return false; } furi_hal_crypto_mode_init_done = false; crypto_key_init(NULL, (uint32_t*)iv); if(SHCI_C2_FUS_LoadUsrKey(slot) == SHCI_Success) { return true; } else { CLEAR_BIT(AES1->CR, AES_CR_EN); furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk); return false; } } bool furi_hal_crypto_enclave_unload_key(uint8_t slot) { if(!furi_hal_bt_is_alive()) { return false; } CLEAR_BIT(AES1->CR, AES_CR_EN); SHCI_CmdStatus_t shci_state = SHCI_C2_FUS_UnloadUsrKey(slot); furi_assert(shci_state == SHCI_Success); furi_hal_bus_disable(FuriHalBusAES1); furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk); return (shci_state == SHCI_Success); } bool furi_hal_crypto_load_key(const uint8_t* key, const uint8_t* iv) { furi_assert(furi_hal_crypto_mutex); furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk); furi_hal_bus_enable(FuriHalBusAES1); furi_hal_crypto_mode_init_done = false; crypto_key_init((uint32_t*)key, (uint32_t*)iv); return true; } bool furi_hal_crypto_unload_key(void) { CLEAR_BIT(AES1->CR, AES_CR_EN); furi_hal_bus_disable(FuriHalBusAES1); furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk); return true; } bool furi_hal_crypto_encrypt(const uint8_t* input, uint8_t* output, size_t size) { bool state = false; SET_BIT(AES1->CR, AES_CR_EN); MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_ENCRYPT); for(size_t i = 0; i < size; i += CRYPTO_BLK_LEN) { size_t blk_len = size - i; if(blk_len > CRYPTO_BLK_LEN) { blk_len = CRYPTO_BLK_LEN; } state = crypto_process_block((uint32_t*)&input[i], (uint32_t*)&output[i], blk_len / 4); if(state == false) { break; } } CLEAR_BIT(AES1->CR, AES_CR_EN); return state; } bool furi_hal_crypto_decrypt(const uint8_t* input, uint8_t* output, size_t size) { bool state = false; if(!furi_hal_crypto_mode_init_done) { MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_INIT); SET_BIT(AES1->CR, AES_CR_EN); if(!furi_hal_crypto_wait_flag(AES_SR_CCF)) { return false; } SET_BIT(AES1->CR, AES_CR_CCFC); furi_hal_crypto_mode_init_done = true; } MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_DECRYPT); SET_BIT(AES1->CR, AES_CR_EN); for(size_t i = 0; i < size; i += CRYPTO_BLK_LEN) { size_t blk_len = size - i; if(blk_len > CRYPTO_BLK_LEN) { blk_len = CRYPTO_BLK_LEN; } state = crypto_process_block((uint32_t*)&input[i], (uint32_t*)&output[i], blk_len / 4); if(state == false) { break; } } CLEAR_BIT(AES1->CR, AES_CR_EN); return state; } static void crypto_key_init_bswap(uint32_t* key, uint32_t* iv, uint32_t chaining_mode) { CLEAR_BIT(AES1->CR, AES_CR_EN); MODIFY_REG( AES1->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, CRYPTO_DATATYPE_32B | CRYPTO_KEYSIZE_256B | chaining_mode); if(key != NULL) { AES1->KEYR7 = __builtin_bswap32(key[0]); AES1->KEYR6 = __builtin_bswap32(key[1]); AES1->KEYR5 = __builtin_bswap32(key[2]); AES1->KEYR4 = __builtin_bswap32(key[3]); AES1->KEYR3 = __builtin_bswap32(key[4]); AES1->KEYR2 = __builtin_bswap32(key[5]); AES1->KEYR1 = __builtin_bswap32(key[6]); AES1->KEYR0 = __builtin_bswap32(key[7]); } AES1->IVR3 = __builtin_bswap32(iv[0]); AES1->IVR2 = __builtin_bswap32(iv[1]); AES1->IVR1 = __builtin_bswap32(iv[2]); AES1->IVR0 = __builtin_bswap32(iv[3]); } static bool furi_hal_crypto_load_key_bswap(const uint8_t* key, const uint8_t* iv, uint32_t chaining_mode) { furi_assert(furi_hal_crypto_mutex); furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk); furi_hal_bus_enable(FuriHalBusAES1); crypto_key_init_bswap((uint32_t*)key, (uint32_t*)iv, chaining_mode); return true; } static bool wait_for_crypto(void) { if(!furi_hal_crypto_wait_flag(AES_SR_CCF)) { return false; } SET_BIT(AES1->CR, AES_CR_CCFC); return true; } static bool furi_hal_crypto_process_block_bswap(const uint8_t* in, uint8_t* out, size_t bytes) { uint32_t block[CRYPTO_BLK_LEN / 4]; memset(block, 0, sizeof(block)); memcpy(block, in, bytes); block[0] = __builtin_bswap32(block[0]); block[1] = __builtin_bswap32(block[1]); block[2] = __builtin_bswap32(block[2]); block[3] = __builtin_bswap32(block[3]); if(!crypto_process_block(block, block, CRYPTO_BLK_LEN / 4)) { return false; } block[0] = __builtin_bswap32(block[0]); block[1] = __builtin_bswap32(block[1]); block[2] = __builtin_bswap32(block[2]); block[3] = __builtin_bswap32(block[3]); memcpy(out, block, bytes); return true; } static bool furi_hal_crypto_process_block_no_read_bswap(const uint8_t* in, size_t bytes) { uint32_t block[CRYPTO_BLK_LEN / 4]; memset(block, 0, sizeof(block)); memcpy(block, in, bytes); AES1->DINR = __builtin_bswap32(block[0]); AES1->DINR = __builtin_bswap32(block[1]); AES1->DINR = __builtin_bswap32(block[2]); AES1->DINR = __builtin_bswap32(block[3]); return wait_for_crypto(); } static void furi_hal_crypto_ctr_prep_iv(uint8_t* iv) { /* append counter to IV */ iv[CRYPTO_CTR_IV_LEN] = 0; iv[CRYPTO_CTR_IV_LEN + 1] = 0; iv[CRYPTO_CTR_IV_LEN + 2] = 0; iv[CRYPTO_CTR_IV_LEN + 3] = 1; } static bool furi_hal_crypto_ctr_payload(const uint8_t* input, uint8_t* output, size_t length) { SET_BIT(AES1->CR, AES_CR_EN); MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_ENCRYPT); size_t last_block_bytes = length % CRYPTO_BLK_LEN; size_t i; for(i = 0; i < length - last_block_bytes; i += CRYPTO_BLK_LEN) { if(!furi_hal_crypto_process_block_bswap(&input[i], &output[i], CRYPTO_BLK_LEN)) { CLEAR_BIT(AES1->CR, AES_CR_EN); return false; } } if(last_block_bytes > 0) { if(!furi_hal_crypto_process_block_bswap(&input[i], &output[i], last_block_bytes)) { CLEAR_BIT(AES1->CR, AES_CR_EN); return false; } } CLEAR_BIT(AES1->CR, AES_CR_EN); return true; } bool furi_hal_crypto_ctr( const uint8_t* key, const uint8_t* iv, const uint8_t* input, uint8_t* output, size_t length) { /* prepare IV and counter */ uint8_t iv_and_counter[CRYPTO_CTR_IV_LEN + CRYPTO_CTR_CTR_LEN]; memcpy(iv_and_counter, iv, CRYPTO_CTR_IV_LEN); furi_hal_crypto_ctr_prep_iv(iv_and_counter); /* load key and IV and set the mode to CTR */ if(!furi_hal_crypto_load_key_bswap(key, iv_and_counter, CRYPTO_AES_CTR)) { furi_hal_crypto_unload_key(); return false; } /* process the input and write to output */ bool state = furi_hal_crypto_ctr_payload(input, output, length); furi_hal_crypto_unload_key(); return state; } static void furi_hal_crypto_gcm_prep_iv(uint8_t* iv) { /* append counter to IV */ iv[CRYPTO_GCM_IV_LEN] = 0; iv[CRYPTO_GCM_IV_LEN + 1] = 0; iv[CRYPTO_GCM_IV_LEN + 2] = 0; iv[CRYPTO_GCM_IV_LEN + 3] = 2; } static bool furi_hal_crypto_gcm_init(bool decrypt) { /* GCM init phase */ MODIFY_REG(AES1->CR, AES_CR_GCMPH, CRYPTO_GCM_PH_INIT); if(decrypt) { MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_DECRYPT); } else { MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_ENCRYPT); } SET_BIT(AES1->CR, AES_CR_EN); if(!wait_for_crypto()) { CLEAR_BIT(AES1->CR, AES_CR_EN); return false; } return true; } static bool furi_hal_crypto_gcm_header(const uint8_t* aad, size_t aad_length) { /* GCM header phase */ MODIFY_REG(AES1->CR, AES_CR_GCMPH, CRYPTO_GCM_PH_HEADER); SET_BIT(AES1->CR, AES_CR_EN); size_t last_block_bytes = aad_length % CRYPTO_BLK_LEN; size_t i; for(i = 0; i < aad_length - last_block_bytes; i += CRYPTO_BLK_LEN) { if(!furi_hal_crypto_process_block_no_read_bswap(&aad[i], CRYPTO_BLK_LEN)) { CLEAR_BIT(AES1->CR, AES_CR_EN); return false; } } if(last_block_bytes > 0) { if(!furi_hal_crypto_process_block_no_read_bswap(&aad[i], last_block_bytes)) { CLEAR_BIT(AES1->CR, AES_CR_EN); return false; } } return true; } static bool furi_hal_crypto_gcm_payload( const uint8_t* input, uint8_t* output, size_t length, bool decrypt) { /* GCM payload phase */ MODIFY_REG(AES1->CR, AES_CR_GCMPH, CRYPTO_GCM_PH_PAYLOAD); SET_BIT(AES1->CR, AES_CR_EN); size_t last_block_bytes = length % CRYPTO_BLK_LEN; size_t i; for(i = 0; i < length - last_block_bytes; i += CRYPTO_BLK_LEN) { if(!furi_hal_crypto_process_block_bswap(&input[i], &output[i], CRYPTO_BLK_LEN)) { CLEAR_BIT(AES1->CR, AES_CR_EN); return false; } } if(last_block_bytes > 0) { if(!decrypt) { MODIFY_REG( AES1->CR, AES_CR_NPBLB, (CRYPTO_BLK_LEN - last_block_bytes) << AES_CR_NPBLB_Pos); } if(!furi_hal_crypto_process_block_bswap(&input[i], &output[i], last_block_bytes)) { CLEAR_BIT(AES1->CR, AES_CR_EN); return false; } } return true; } static bool furi_hal_crypto_gcm_finish(size_t aad_length, size_t payload_length, uint8_t* tag) { /* GCM final phase */ MODIFY_REG(AES1->CR, AES_CR_GCMPH, CRYPTO_GCM_PH_FINAL); uint32_t last_block[CRYPTO_BLK_LEN / 4]; memset(last_block, 0, sizeof(last_block)); last_block[1] = __builtin_bswap32((uint32_t)(aad_length * 8)); last_block[3] = __builtin_bswap32((uint32_t)(payload_length * 8)); if(!furi_hal_crypto_process_block_bswap((uint8_t*)&last_block[0], tag, CRYPTO_BLK_LEN)) { CLEAR_BIT(AES1->CR, AES_CR_EN); return false; } return true; } static bool furi_hal_crypto_gcm_compare_tag(const uint8_t* tag1, const uint8_t* tag2) { uint8_t diff = 0; size_t i; for(i = 0; i < CRYPTO_GCM_TAG_LEN; i++) { diff |= tag1[i] ^ tag2[i]; } return (diff == 0); } bool furi_hal_crypto_gcm( const uint8_t* key, const uint8_t* iv, const uint8_t* aad, size_t aad_length, const uint8_t* input, uint8_t* output, size_t length, uint8_t* tag, bool decrypt) { /* GCM init phase */ /* prepare IV and counter */ uint8_t iv_and_counter[CRYPTO_GCM_IV_LEN + CRYPTO_GCM_CTR_LEN]; memcpy(iv_and_counter, iv, CRYPTO_GCM_IV_LEN); furi_hal_crypto_gcm_prep_iv(iv_and_counter); /* load key and IV and set the mode to CTR */ if(!furi_hal_crypto_load_key_bswap(key, iv_and_counter, CRYPTO_AES_GCM)) { furi_hal_crypto_unload_key(); return false; } if(!furi_hal_crypto_gcm_init(decrypt)) { furi_hal_crypto_unload_key(); return false; } /* GCM header phase */ if(aad_length > 0) { if(!furi_hal_crypto_gcm_header(aad, aad_length)) { furi_hal_crypto_unload_key(); return false; } } /* GCM payload phase */ if(!furi_hal_crypto_gcm_payload(input, output, length, decrypt)) { furi_hal_crypto_unload_key(); return false; } /* GCM final phase */ if(!furi_hal_crypto_gcm_finish(aad_length, length, tag)) { furi_hal_crypto_unload_key(); return false; } furi_hal_crypto_unload_key(); return true; } FuriHalCryptoGCMState furi_hal_crypto_gcm_encrypt_and_tag( const uint8_t* key, const uint8_t* iv, const uint8_t* aad, size_t aad_length, const uint8_t* input, uint8_t* output, size_t length, uint8_t* tag) { if(!furi_hal_crypto_gcm(key, iv, aad, aad_length, input, output, length, tag, false)) { memset(output, 0, length); memset(tag, 0, CRYPTO_GCM_TAG_LEN); return FuriHalCryptoGCMStateError; } return FuriHalCryptoGCMStateOk; } FuriHalCryptoGCMState furi_hal_crypto_gcm_decrypt_and_verify( const uint8_t* key, const uint8_t* iv, const uint8_t* aad, size_t aad_length, const uint8_t* input, uint8_t* output, size_t length, const uint8_t* tag) { uint8_t dtag[CRYPTO_GCM_TAG_LEN]; if(!furi_hal_crypto_gcm(key, iv, aad, aad_length, input, output, length, dtag, true)) { memset(output, 0, length); return FuriHalCryptoGCMStateError; } if(!furi_hal_crypto_gcm_compare_tag(dtag, tag)) { memset(output, 0, length); return FuriHalCryptoGCMStateAuthFailure; } return FuriHalCryptoGCMStateOk; }