#include "nrf24.h" #include #include #include #include #include void nrf24_init() { furi_hal_spi_bus_handle_init(nrf24_HANDLE); furi_hal_spi_acquire(nrf24_HANDLE); furi_hal_gpio_init(nrf24_CE_PIN, GpioModeOutputPushPull, GpioPullUp, GpioSpeedVeryHigh); furi_hal_gpio_write(nrf24_CE_PIN, false); } void nrf24_spi_trx( FuriHalSpiBusHandle* handle, uint8_t* tx, uint8_t* rx, uint8_t size, uint32_t timeout) { UNUSED(timeout); furi_hal_gpio_write(handle->cs, false); furi_hal_spi_bus_trx(handle, tx, rx, size, nrf24_TIMEOUT); furi_hal_gpio_write(handle->cs, true); } uint8_t nrf24_write_reg(FuriHalSpiBusHandle* handle, uint8_t reg, uint8_t data) { uint8_t tx[2] = {W_REGISTER | (REGISTER_MASK & reg), data}; uint8_t rx[2] = {0}; nrf24_spi_trx(handle, tx, rx, 2, nrf24_TIMEOUT); return rx[0]; } uint8_t nrf24_write_buf_reg(FuriHalSpiBusHandle* handle, uint8_t reg, uint8_t* data, uint8_t size) { uint8_t tx[size + 1]; uint8_t rx[size + 1]; memset(rx, 0, size + 1); tx[0] = W_REGISTER | (REGISTER_MASK & reg); memcpy(&tx[1], data, size); nrf24_spi_trx(handle, tx, rx, size + 1, nrf24_TIMEOUT); return rx[0]; } uint8_t nrf24_read_reg(FuriHalSpiBusHandle* handle, uint8_t reg, uint8_t* data, uint8_t size) { uint8_t tx[size + 1]; uint8_t rx[size + 1]; memset(rx, 0, size + 1); tx[0] = R_REGISTER | (REGISTER_MASK & reg); memset(&tx[1], 0, size); nrf24_spi_trx(handle, tx, rx, size + 1, nrf24_TIMEOUT); memcpy(data, &rx[1], size); return rx[0]; } uint8_t nrf24_flush_rx(FuriHalSpiBusHandle* handle) { uint8_t tx[] = {FLUSH_RX}; uint8_t rx[] = {0}; nrf24_spi_trx(handle, tx, rx, 1, nrf24_TIMEOUT); return rx[0]; } uint8_t nrf24_flush_tx(FuriHalSpiBusHandle* handle) { uint8_t tx[] = {FLUSH_TX}; uint8_t rx[] = {0}; nrf24_spi_trx(handle, tx, rx, 1, nrf24_TIMEOUT); return rx[0]; } uint8_t nrf24_get_maclen(FuriHalSpiBusHandle* handle) { uint8_t maclen; nrf24_read_reg(handle, REG_SETUP_AW, &maclen, 1); maclen &= 3; return maclen + 2; } uint8_t nrf24_set_maclen(FuriHalSpiBusHandle* handle, uint8_t maclen) { assert(maclen > 1 && maclen < 6); uint8_t status = 0; status = nrf24_write_reg(handle, REG_SETUP_AW, maclen - 2); return status; } uint8_t nrf24_status(FuriHalSpiBusHandle* handle) { uint8_t status; uint8_t tx[] = {R_REGISTER | (REGISTER_MASK & REG_STATUS)}; nrf24_spi_trx(handle, tx, &status, 1, nrf24_TIMEOUT); return status; } uint32_t nrf24_get_rate(FuriHalSpiBusHandle* handle) { uint8_t setup = 0; uint32_t rate = 0; nrf24_read_reg(handle, REG_RF_SETUP, &setup, 1); setup &= 0x28; if(setup == 0x20) rate = 250000; // 250kbps else if(setup == 0x08) rate = 2000000; // 2Mbps else if(setup == 0x00) rate = 1000000; // 1Mbps return rate; } uint8_t nrf24_set_rate(FuriHalSpiBusHandle* handle, uint32_t rate) { uint8_t r6 = 0; uint8_t status = 0; if(!rate) rate = 2000000; nrf24_read_reg(handle, REG_RF_SETUP, &r6, 1); // RF_SETUP register r6 = r6 & (~0x28); // Clear rate fields. if(rate == 2000000) r6 = r6 | 0x08; else if(rate == 1000000) r6 = r6; else if(rate == 250000) r6 = r6 | 0x20; status = nrf24_write_reg(handle, REG_RF_SETUP, r6); // Write new rate. return status; } uint8_t nrf24_get_chan(FuriHalSpiBusHandle* handle) { uint8_t channel = 0; nrf24_read_reg(handle, REG_RF_CH, &channel, 1); return channel; } uint8_t nrf24_set_chan(FuriHalSpiBusHandle* handle, uint8_t chan) { uint8_t status; status = nrf24_write_reg(handle, REG_RF_CH, chan); return status; } uint8_t nrf24_get_src_mac(FuriHalSpiBusHandle* handle, uint8_t* mac) { uint8_t size = 0; uint8_t status = 0; size = nrf24_get_maclen(handle); status = nrf24_read_reg(handle, REG_RX_ADDR_P0, mac, size); return status; } uint8_t nrf24_set_src_mac(FuriHalSpiBusHandle* handle, uint8_t* mac, uint8_t size) { uint8_t status = 0; uint8_t clearmac[] = {0, 0, 0, 0, 0}; nrf24_set_maclen(handle, size); nrf24_write_buf_reg(handle, REG_RX_ADDR_P0, clearmac, 5); status = nrf24_write_buf_reg(handle, REG_RX_ADDR_P0, mac, size); return status; } uint8_t nrf24_get_dst_mac(FuriHalSpiBusHandle* handle, uint8_t* mac) { uint8_t size = 0; uint8_t status = 0; size = nrf24_get_maclen(handle); status = nrf24_read_reg(handle, REG_TX_ADDR, mac, size); return status; } uint8_t nrf24_set_dst_mac(FuriHalSpiBusHandle* handle, uint8_t* mac, uint8_t size) { uint8_t status = 0; uint8_t clearmac[] = {0, 0, 0, 0, 0}; nrf24_set_maclen(handle, size); nrf24_write_buf_reg(handle, REG_TX_ADDR, clearmac, 5); status = nrf24_write_buf_reg(handle, REG_TX_ADDR, mac, size); return status; } uint8_t nrf24_get_packetlen(FuriHalSpiBusHandle* handle) { uint8_t len = 0; nrf24_read_reg(handle, RX_PW_P0, &len, 1); return len; } uint8_t nrf24_set_packetlen(FuriHalSpiBusHandle* handle, uint8_t len) { uint8_t status = 0; status = nrf24_write_reg(handle, RX_PW_P0, len); return status; } uint8_t nrf24_rxpacket(FuriHalSpiBusHandle* handle, uint8_t* packet, uint8_t* packetsize, bool full) { uint8_t status = 0; uint8_t size = 0; uint8_t tx_pl_wid[] = {R_RX_PL_WID, 0}; uint8_t rx_pl_wid[] = {0, 0}; uint8_t tx_cmd[33] = {0}; // 32 max payload size + 1 for command uint8_t tmp_packet[33] = {0}; status = nrf24_status(handle); if(status & 0x40) { if(full) size = nrf24_get_packetlen(handle); else { nrf24_spi_trx(handle, tx_pl_wid, rx_pl_wid, 2, nrf24_TIMEOUT); size = rx_pl_wid[1]; } tx_cmd[0] = R_RX_PAYLOAD; nrf24_spi_trx(handle, tx_cmd, tmp_packet, size + 1, nrf24_TIMEOUT); nrf24_write_reg(handle, REG_STATUS, 0x40); // clear bit. memcpy(packet, &tmp_packet[1], size); } else if(status == 0) { nrf24_flush_rx(handle); nrf24_write_reg(handle, REG_STATUS, 0x40); // clear bit. } *packetsize = size; return status; } uint8_t nrf24_txpacket(FuriHalSpiBusHandle* handle, uint8_t* payload, uint8_t size, bool ack) { uint8_t status = 0; uint8_t tx[size + 1]; uint8_t rx[size + 1]; memset(tx, 0, size + 1); memset(rx, 0, size + 1); if(!ack) tx[0] = W_TX_PAYLOAD_NOACK; else tx[0] = W_TX_PAYLOAD; memcpy(&tx[1], payload, size); nrf24_spi_trx(handle, tx, rx, size + 1, nrf24_TIMEOUT); nrf24_set_tx_mode(handle); while(!(status & (TX_DS | MAX_RT))) status = nrf24_status(handle); if(status & MAX_RT) nrf24_flush_tx(handle); nrf24_set_idle(handle); nrf24_write_reg(handle, REG_STATUS, TX_DS | MAX_RT); return status & TX_DS; } uint8_t nrf24_power_up(FuriHalSpiBusHandle* handle) { uint8_t status = 0; uint8_t cfg = 0; nrf24_read_reg(handle, REG_CONFIG, &cfg, 1); cfg = cfg | 2; status = nrf24_write_reg(handle, REG_CONFIG, cfg); furi_delay_ms(5000); return status; } uint8_t nrf24_set_idle(FuriHalSpiBusHandle* handle) { uint8_t status = 0; uint8_t cfg = 0; nrf24_read_reg(handle, REG_CONFIG, &cfg, 1); cfg &= 0xfc; // clear bottom two bits to power down the radio status = nrf24_write_reg(handle, REG_CONFIG, cfg); //nr204_write_reg(handle, REG_EN_RXADDR, 0x0); furi_hal_gpio_write(nrf24_CE_PIN, false); return status; } uint8_t nrf24_set_rx_mode(FuriHalSpiBusHandle* handle) { uint8_t status = 0; uint8_t cfg = 0; //status = nrf24_write_reg(handle, REG_CONFIG, 0x0F); // enable 2-byte CRC, PWR_UP, and PRIM_RX nrf24_read_reg(handle, REG_CONFIG, &cfg, 1); cfg |= 0x03; // PWR_UP, and PRIM_RX status = nrf24_write_reg(handle, REG_CONFIG, cfg); //nr204_write_reg(REG_EN_RXADDR, 0x03) // Set RX Pipe 0 and 1 furi_hal_gpio_write(nrf24_CE_PIN, true); furi_delay_ms(2000); return status; } uint8_t nrf24_set_tx_mode(FuriHalSpiBusHandle* handle) { uint8_t status = 0; uint8_t cfg = 0; furi_hal_gpio_write(nrf24_CE_PIN, false); nrf24_write_reg(handle, REG_STATUS, 0x30); //status = nrf24_write_reg(handle, REG_CONFIG, 0x0E); // enable 2-byte CRC, PWR_UP nrf24_read_reg(handle, REG_CONFIG, &cfg, 1); cfg &= 0xfe; // disable PRIM_RX cfg |= 0x02; // PWR_UP status = nrf24_write_reg(handle, REG_CONFIG, cfg); furi_hal_gpio_write(nrf24_CE_PIN, true); furi_delay_ms(2); return status; } void nrf24_configure( FuriHalSpiBusHandle* handle, uint8_t rate, uint8_t* srcmac, uint8_t* dstmac, uint8_t maclen, uint8_t channel, bool noack, bool disable_aa) { assert(channel <= 125); assert(rate == 1 || rate == 2); if(rate == 2) rate = 8; // 2Mbps else rate = 0; // 1Mbps nrf24_write_reg(handle, REG_CONFIG, 0x00); // Stop nRF nrf24_set_idle(handle); nrf24_write_reg(handle, REG_STATUS, 0x1c); // clear interrupts if(disable_aa) nrf24_write_reg(handle, REG_EN_AA, 0x00); // Disable Shockburst else nrf24_write_reg(handle, REG_EN_AA, 0x1F); // Enable Shockburst nrf24_write_reg(handle, REG_DYNPD, 0x3F); // enable dynamic payload length on all pipes if(noack) nrf24_write_reg(handle, REG_FEATURE, 0x05); // disable payload-with-ack, enable noack else { nrf24_write_reg(handle, REG_CONFIG, 0x0C); // 2 byte CRC nrf24_write_reg(handle, REG_FEATURE, 0x07); // enable dyn payload and ack nrf24_write_reg( handle, REG_SETUP_RETR, 0x1f); // 15 retries for AA, 500us auto retransmit delay } nrf24_set_idle(handle); nrf24_flush_rx(handle); nrf24_flush_tx(handle); if(maclen) nrf24_set_maclen(handle, maclen); if(srcmac) nrf24_set_src_mac(handle, srcmac, maclen); if(dstmac) nrf24_set_dst_mac(handle, dstmac, maclen); nrf24_write_reg(handle, REG_RF_CH, channel); nrf24_write_reg(handle, REG_RF_SETUP, rate); furi_delay_ms(200); } void nrf24_init_promisc_mode(FuriHalSpiBusHandle* handle, uint8_t channel, uint8_t rate) { //uint8_t preamble[] = {0x55, 0x00}; // little endian uint8_t preamble[] = {0xAA, 0x00}; // little endian //uint8_t preamble[] = {0x00, 0x55}; // little endian //uint8_t preamble[] = {0x00, 0xAA}; // little endian nrf24_write_reg(handle, REG_CONFIG, 0x00); // Stop nRF nrf24_write_reg(handle, REG_STATUS, 0x1c); // clear interrupts nrf24_write_reg(handle, REG_DYNPD, 0x0); // disable shockburst nrf24_write_reg(handle, REG_EN_AA, 0x00); // Disable Shockburst nrf24_write_reg(handle, REG_FEATURE, 0x05); // disable payload-with-ack, enable noack nrf24_set_maclen(handle, 2); // shortest address nrf24_set_src_mac(handle, preamble, 2); // set src mac to preamble bits to catch everything nrf24_set_packetlen(handle, 32); // set max packet length nrf24_set_idle(handle); nrf24_flush_rx(handle); nrf24_flush_tx(handle); nrf24_write_reg(handle, REG_RF_CH, channel); nrf24_write_reg(handle, REG_RF_SETUP, rate); // prime for RX, no checksum nrf24_write_reg(handle, REG_CONFIG, 0x03); // PWR_UP and PRIM_RX, disable AA and CRC furi_hal_gpio_write(nrf24_CE_PIN, true); furi_delay_ms(100); } void hexlify(uint8_t* in, uint8_t size, char* out) { memset(out, 0, size * 2); for(int i = 0; i < size; i++) snprintf(out + strlen(out), sizeof(out + strlen(out)), "%02X", in[i]); } uint64_t bytes_to_int64(uint8_t* bytes, uint8_t size, bool bigendian) { uint64_t ret = 0; for(int i = 0; i < size; i++) if(bigendian) ret |= bytes[i] << ((size - 1 - i) * 8); else ret |= bytes[i] << (i * 8); return ret; } void int64_to_bytes(uint64_t val, uint8_t* out, bool bigendian) { for(int i = 0; i < 8; i++) { if(bigendian) out[i] = (val >> ((7 - i) * 8)) & 0xff; else out[i] = (val >> (i * 8)) & 0xff; } } uint32_t bytes_to_int32(uint8_t* bytes, bool bigendian) { uint32_t ret = 0; for(int i = 0; i < 4; i++) if(bigendian) ret |= bytes[i] << ((3 - i) * 8); else ret |= bytes[i] << (i * 8); return ret; } void int32_to_bytes(uint32_t val, uint8_t* out, bool bigendian) { for(int i = 0; i < 4; i++) { if(bigendian) out[i] = (val >> ((3 - i) * 8)) & 0xff; else out[i] = (val >> (i * 8)) & 0xff; } } uint64_t bytes_to_int16(uint8_t* bytes, bool bigendian) { uint16_t ret = 0; for(int i = 0; i < 2; i++) if(bigendian) ret |= bytes[i] << ((1 - i) * 8); else ret |= bytes[i] << (i * 8); return ret; } void int16_to_bytes(uint16_t val, uint8_t* out, bool bigendian) { for(int i = 0; i < 2; i++) { if(bigendian) out[i] = (val >> ((1 - i) * 8)) & 0xff; else out[i] = (val >> (i * 8)) & 0xff; } } // handle iffyness with preamble processing sometimes being a bit (literally) off void alt_address_old(uint8_t* packet, uint8_t* altaddr) { uint8_t macmess_hi_b[4]; uint8_t macmess_lo_b[2]; uint32_t macmess_hi; uint16_t macmess_lo; uint8_t preserved; // get first 6 bytes into 32-bit and 16-bit variables memcpy(macmess_hi_b, packet, 4); memcpy(macmess_lo_b, packet + 4, 2); macmess_hi = bytes_to_int32(macmess_hi_b, true); //preserve least 7 bits from hi that will be shifted down to lo preserved = macmess_hi & 0x7f; macmess_hi >>= 7; macmess_lo = bytes_to_int16(macmess_lo_b, true); macmess_lo >>= 7; macmess_lo = (preserved << 9) | macmess_lo; int32_to_bytes(macmess_hi, macmess_hi_b, true); int16_to_bytes(macmess_lo, macmess_lo_b, true); memcpy(altaddr, &macmess_hi_b[1], 3); memcpy(altaddr + 3, macmess_lo_b, 2); } bool validate_address(uint8_t* addr) { uint8_t bad[][3] = {{0x55, 0x55}, {0xAA, 0xAA}, {0x00, 0x00}, {0xFF, 0xFF}}; for(int i = 0; i < 4; i++) for(int j = 0; j < 2; j++) if(!memcmp(addr + j * 2, bad[i], 2)) return false; return true; } bool nrf24_sniff_address(FuriHalSpiBusHandle* handle, uint8_t maclen, uint8_t* address) { bool found = false; uint8_t packet[32] = {0}; uint8_t packetsize; //char printit[65]; uint8_t status = 0; status = nrf24_rxpacket(handle, packet, &packetsize, true); if(status & 0x40) { if(validate_address(packet)) { for(int i = 0; i < maclen; i++) address[i] = packet[maclen - 1 - i]; /* alt_address(packet, packet); for(i = 0; i < maclen; i++) address[i + 5] = packet[maclen - 1 - i]; */ //memcpy(address, packet, maclen); //hexlify(packet, packetsize, printit); found = true; } } return found; } uint8_t nrf24_find_channel( FuriHalSpiBusHandle* handle, uint8_t* srcmac, uint8_t* dstmac, uint8_t maclen, uint8_t rate, uint8_t min_channel, uint8_t max_channel, bool autoinit) { uint8_t ping_packet[] = {0x0f, 0x0f, 0x0f, 0x0f}; // this can be anything, we just need an ack uint8_t ch = max_channel + 1; // means fail nrf24_configure(handle, rate, srcmac, dstmac, maclen, 2, false, false); for(ch = min_channel; ch <= max_channel + 1; ch++) { nrf24_write_reg(handle, REG_RF_CH, ch); if(nrf24_txpacket(handle, ping_packet, 4, true)) break; } if(autoinit) { FURI_LOG_D("nrf24", "initializing radio for channel %d", ch); nrf24_configure(handle, rate, srcmac, dstmac, maclen, ch, false, false); return ch; } return ch; }