#include "mifare_classic.h"
#include "nfca.h"
#include "nfc_util.h"
#include <furi_hal_rtc.h>

// Algorithm from https://github.com/RfidResearchGroup/proxmark3.git

#define TAG "MfClassic"

#define MF_CLASSIC_ACK_CMD 0xAU
#define MF_CLASSIC_NACK_BUF_VALID_CMD 0x0U
#define MF_CLASSIC_NACK_BUF_INVALID_CMD 0x4U
#define MF_CLASSIC_AUTH_KEY_A_CMD 0x60U
#define MF_CLASSIC_AUTH_KEY_B_CMD 0x61U
#define MF_CLASSIC_READ_BLOCK_CMD 0x30U
#define MF_CLASSIC_WRITE_BLOCK_CMD 0xA0U
#define MF_CLASSIC_TRANSFER_CMD 0xB0U
#define MF_CLASSIC_DECREMENT_CMD 0xC0U
#define MF_CLASSIC_INCREMENT_CMD 0xC1U
#define MF_CLASSIC_RESTORE_CMD 0xC2U

const char* mf_classic_get_type_str(MfClassicType type) {
    if(type == MfClassicTypeMini) {
        return "MIFARE Mini 0.3K";
    } else if(type == MfClassicType1k) {
        return "MIFARE Classic 1K";
    } else if(type == MfClassicType4k) {
        return "MIFARE Classic 4K";
    } else {
        return "Unknown";
    }
}

static uint8_t mf_classic_get_first_block_num_of_sector(uint8_t sector) {
    furi_assert(sector < 40);
    if(sector < 32) {
        return sector * 4;
    } else {
        return 32 * 4 + (sector - 32) * 16;
    }
}

uint8_t mf_classic_get_sector_trailer_block_num_by_sector(uint8_t sector) {
    furi_assert(sector < 40);
    if(sector < 32) {
        return sector * 4 + 3;
    } else {
        return 32 * 4 + (sector - 32) * 16 + 15;
    }
}

uint8_t mf_classic_get_sector_by_block(uint8_t block) {
    if(block < 128) {
        return (block | 0x03) / 4;
    } else {
        return 32 + ((block | 0xf) - 32 * 4) / 16;
    }
}

static uint8_t mf_classic_get_blocks_num_in_sector(uint8_t sector) {
    furi_assert(sector < 40);
    return sector < 32 ? 4 : 16;
}

uint8_t mf_classic_get_sector_trailer_num_by_block(uint8_t block) {
    if(block < 128) {
        return block | 0x03;
    } else {
        return block | 0x0f;
    }
}

bool mf_classic_is_sector_trailer(uint8_t block) {
    return block == mf_classic_get_sector_trailer_num_by_block(block);
}

MfClassicSectorTrailer*
    mf_classic_get_sector_trailer_by_sector(MfClassicData* data, uint8_t sector) {
    furi_assert(data);
    uint8_t sec_tr_block_num = mf_classic_get_sector_trailer_block_num_by_sector(sector);
    return (MfClassicSectorTrailer*)data->block[sec_tr_block_num].value;
}

uint8_t mf_classic_get_total_sectors_num(MfClassicType type) {
    if(type == MfClassicTypeMini) {
        return MF_MINI_TOTAL_SECTORS_NUM;
    } else if(type == MfClassicType1k) {
        return MF_CLASSIC_1K_TOTAL_SECTORS_NUM;
    } else if(type == MfClassicType4k) {
        return MF_CLASSIC_4K_TOTAL_SECTORS_NUM;
    } else {
        return 0;
    }
}

uint16_t mf_classic_get_total_block_num(MfClassicType type) {
    if(type == MfClassicTypeMini) {
        return 20;
    } else if(type == MfClassicType1k) {
        return 64;
    } else if(type == MfClassicType4k) {
        return 256;
    } else {
        return 0;
    }
}

bool mf_classic_is_block_read(MfClassicData* data, uint8_t block_num) {
    furi_assert(data);

    return (FURI_BIT(data->block_read_mask[block_num / 32], block_num % 32) == 1);
}

void mf_classic_set_block_read(MfClassicData* data, uint8_t block_num, MfClassicBlock* block_data) {
    furi_assert(data);

    if(mf_classic_is_sector_trailer(block_num)) {
        memcpy(&data->block[block_num].value[6], &block_data->value[6], 4);
    } else {
        memcpy(data->block[block_num].value, block_data->value, MF_CLASSIC_BLOCK_SIZE);
    }
    FURI_BIT_SET(data->block_read_mask[block_num / 32], block_num % 32);
}

bool mf_classic_is_sector_data_read(MfClassicData* data, uint8_t sector_num) {
    furi_assert(data);

    uint8_t first_block = mf_classic_get_first_block_num_of_sector(sector_num);
    uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sector_num);
    bool data_read = true;
    for(size_t i = first_block; i < first_block + total_blocks; i++) {
        data_read &= mf_classic_is_block_read(data, i);
    }

    return data_read;
}

void mf_classic_set_sector_data_not_read(MfClassicData* data) {
    furi_assert(data);
    memset(data->block_read_mask, 0, sizeof(data->block_read_mask));
}

bool mf_classic_is_key_found(MfClassicData* data, uint8_t sector_num, MfClassicKey key_type) {
    furi_assert(data);

    bool key_found = false;
    if(key_type == MfClassicKeyA) {
        key_found = (FURI_BIT(data->key_a_mask, sector_num) == 1);
    } else if(key_type == MfClassicKeyB) {
        key_found = (FURI_BIT(data->key_b_mask, sector_num) == 1);
    }

    return key_found;
}

void mf_classic_set_key_found(
    MfClassicData* data,
    uint8_t sector_num,
    MfClassicKey key_type,
    uint64_t key) {
    furi_assert(data);

    uint8_t key_arr[6] = {};
    MfClassicSectorTrailer* sec_trailer =
        mf_classic_get_sector_trailer_by_sector(data, sector_num);
    nfc_util_num2bytes(key, 6, key_arr);
    if(key_type == MfClassicKeyA) {
        memcpy(sec_trailer->key_a, key_arr, sizeof(sec_trailer->key_a));
        FURI_BIT_SET(data->key_a_mask, sector_num);
    } else if(key_type == MfClassicKeyB) {
        memcpy(sec_trailer->key_b, key_arr, sizeof(sec_trailer->key_b));
        FURI_BIT_SET(data->key_b_mask, sector_num);
    }
}

void mf_classic_set_key_not_found(MfClassicData* data, uint8_t sector_num, MfClassicKey key_type) {
    furi_assert(data);

    if(key_type == MfClassicKeyA) {
        FURI_BIT_CLEAR(data->key_a_mask, sector_num);
    } else if(key_type == MfClassicKeyB) {
        FURI_BIT_CLEAR(data->key_b_mask, sector_num);
    }
}

bool mf_classic_is_sector_read(MfClassicData* data, uint8_t sector_num) {
    furi_assert(data);

    bool sector_read = false;
    do {
        if(!mf_classic_is_key_found(data, sector_num, MfClassicKeyA)) break;
        if(!mf_classic_is_key_found(data, sector_num, MfClassicKeyB)) break;
        uint8_t start_block = mf_classic_get_first_block_num_of_sector(sector_num);
        uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sector_num);
        uint8_t block_read = true;
        for(size_t i = start_block; i < start_block + total_blocks; i++) {
            block_read = mf_classic_is_block_read(data, i);
            if(!block_read) break;
        }
        sector_read = block_read;
    } while(false);

    return sector_read;
}

void mf_classic_get_read_sectors_and_keys(
    MfClassicData* data,
    uint8_t* sectors_read,
    uint8_t* keys_found) {
    furi_assert(data);
    furi_assert(sectors_read);
    furi_assert(keys_found);

    *sectors_read = 0;
    *keys_found = 0;
    uint8_t sectors_total = mf_classic_get_total_sectors_num(data->type);
    for(size_t i = 0; i < sectors_total; i++) {
        if(mf_classic_is_key_found(data, i, MfClassicKeyA)) {
            *keys_found += 1;
        }
        if(mf_classic_is_key_found(data, i, MfClassicKeyB)) {
            *keys_found += 1;
        }
        uint8_t first_block = mf_classic_get_first_block_num_of_sector(i);
        uint8_t total_blocks_in_sec = mf_classic_get_blocks_num_in_sector(i);
        bool blocks_read = true;
        for(size_t j = first_block; j < first_block + total_blocks_in_sec; j++) {
            blocks_read = mf_classic_is_block_read(data, j);
            if(!blocks_read) break;
        }
        if(blocks_read) {
            *sectors_read += 1;
        }
    }
}

bool mf_classic_is_card_read(MfClassicData* data) {
    furi_assert(data);

    uint8_t sectors_total = mf_classic_get_total_sectors_num(data->type);
    uint8_t sectors_read = 0;
    uint8_t keys_found = 0;
    mf_classic_get_read_sectors_and_keys(data, &sectors_read, &keys_found);
    bool card_read = (sectors_read == sectors_total) && (keys_found == sectors_total * 2);

    return card_read;
}

bool mf_classic_is_allowed_access_sector_trailer(
    MfClassicData* data,
    uint8_t block_num,
    MfClassicKey key,
    MfClassicAction action) {
    uint8_t* sector_trailer = data->block[block_num].value;
    uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) |
                 ((sector_trailer[8] >> 7) & 0x01);
    switch(action) {
    case MfClassicActionKeyARead: {
        return false;
    }
    case MfClassicActionKeyAWrite:
    case MfClassicActionKeyBWrite: {
        return (
            (key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
            (key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
    }
    case MfClassicActionKeyBRead: {
        return (key == MfClassicKeyA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
    }
    case MfClassicActionACRead: {
        return (
            (key == MfClassicKeyA) ||
            (key == MfClassicKeyB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
    }
    case MfClassicActionACWrite: {
        return (
            (key == MfClassicKeyA && (AC == 0x01)) ||
            (key == MfClassicKeyB && (AC == 0x03 || AC == 0x05)));
    }
    default:
        return false;
    }
    return true;
}

bool mf_classic_is_allowed_access_data_block(
    MfClassicData* data,
    uint8_t block_num,
    MfClassicKey key,
    MfClassicAction action) {
    uint8_t* sector_trailer =
        data->block[mf_classic_get_sector_trailer_num_by_block(block_num)].value;

    if(block_num == 0 && action == MfClassicActionDataWrite) {
        return false;
    }

    uint8_t sector_block;
    if(block_num <= 128) {
        sector_block = block_num & 0x03;
    } else {
        sector_block = (block_num & 0x0f) / 5;
    }

    uint8_t AC;
    switch(sector_block) {
    case 0x00: {
        AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) |
             ((sector_trailer[8] >> 4) & 0x01);
        break;
    }
    case 0x01: {
        AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) |
             ((sector_trailer[8] >> 5) & 0x01);
        break;
    }
    case 0x02: {
        AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) |
             ((sector_trailer[8] >> 6) & 0x01);
        break;
    }
    default:
        return false;
    }

    switch(action) {
    case MfClassicActionDataRead: {
        return (
            (key == MfClassicKeyA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) ||
            (key == MfClassicKeyB && !(AC == 0x07)));
    }
    case MfClassicActionDataWrite: {
        return (
            (key == MfClassicKeyA && (AC == 0x00)) ||
            (key == MfClassicKeyB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
    }
    case MfClassicActionDataInc: {
        return (
            (key == MfClassicKeyA && (AC == 0x00)) ||
            (key == MfClassicKeyB && (AC == 0x00 || AC == 0x06)));
    }
    case MfClassicActionDataDec: {
        return (
            (key == MfClassicKeyA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) ||
            (key == MfClassicKeyB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
    }
    default:
        return false;
    }

    return false;
}

static bool mf_classic_is_allowed_access(
    MfClassicEmulator* emulator,
    uint8_t block_num,
    MfClassicKey key,
    MfClassicAction action) {
    if(mf_classic_is_sector_trailer(block_num)) {
        return mf_classic_is_allowed_access_sector_trailer(
            &emulator->data, block_num, key, action);
    } else {
        return mf_classic_is_allowed_access_data_block(&emulator->data, block_num, key, action);
    }
}

bool mf_classic_is_value_block(MfClassicData* data, uint8_t block_num) {
    // Check if key A can write, if it can, it's transport configuration, not data block
    return !mf_classic_is_allowed_access_data_block(
               data, block_num, MfClassicKeyA, MfClassicActionDataWrite) &&
           (mf_classic_is_allowed_access_data_block(
                data, block_num, MfClassicKeyB, MfClassicActionDataInc) ||
            mf_classic_is_allowed_access_data_block(
                data, block_num, MfClassicKeyB, MfClassicActionDataDec));
}

bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
    UNUSED(ATQA1);
    if((ATQA0 == 0x44 || ATQA0 == 0x04) &&
       (SAK == 0x08 || SAK == 0x88 || SAK == 0x09 || SAK == 0x89)) {
        return true;
    } else if((ATQA0 == 0x01) && (ATQA1 == 0x0F) && (SAK == 0x01)) {
        //skylanders support
        return true;
    } else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
        return true;
    } else {
        return false;
    }
}

MfClassicType mf_classic_get_classic_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
    UNUSED(ATQA1);
    if((ATQA0 == 0x44 || ATQA0 == 0x04)) {
        if((SAK == 0x08 || SAK == 0x88)) {
            return MfClassicType1k;
        } else if((SAK == 0x09 || SAK == 0x89)) {
            return MfClassicTypeMini;
        }
    } else if((ATQA0 == 0x01) && (ATQA1 == 0x0F) && (SAK == 0x01)) {
        //skylanders support
        return MfClassicType1k;
    } else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
        return MfClassicType4k;
    }
    return MfClassicType1k;
}

void mf_classic_reader_add_sector(
    MfClassicReader* reader,
    uint8_t sector,
    uint64_t key_a,
    uint64_t key_b) {
    furi_assert(reader);
    furi_assert(sector < MF_CLASSIC_SECTORS_MAX);
    furi_assert((key_a != MF_CLASSIC_NO_KEY) || (key_b != MF_CLASSIC_NO_KEY));

    if(reader->sectors_to_read < MF_CLASSIC_SECTORS_MAX) {
        reader->sector_reader[reader->sectors_to_read].key_a = key_a;
        reader->sector_reader[reader->sectors_to_read].key_b = key_b;
        reader->sector_reader[reader->sectors_to_read].sector_num = sector;
        reader->sectors_to_read++;
    }
}

bool mf_classic_block_to_value(const uint8_t* block, int32_t* value, uint8_t* addr) {
    uint32_t v = *(uint32_t*)&block[0];
    uint32_t v_inv = *(uint32_t*)&block[4];
    uint32_t v1 = *(uint32_t*)&block[8];

    bool val_checks =
        ((v == v1) && (v == ~v_inv) && (block[12] == (~block[13] & 0xFF)) &&
         (block[14] == (~block[15] & 0xFF)) && (block[12] == block[14]));
    if(value) {
        *value = (int32_t)v;
    }
    if(addr) {
        *addr = block[12];
    }
    return val_checks;
}

void mf_classic_value_to_block(int32_t value, uint8_t addr, uint8_t* block) {
    uint32_t v_inv = ~((uint32_t)value);

    memcpy(block, &value, 4); //-V1086
    memcpy(block + 4, &v_inv, 4); //-V1086
    memcpy(block + 8, &value, 4); //-V1086

    block[12] = addr;
    block[13] = ~addr & 0xFF;
    block[14] = addr;
    block[15] = ~addr & 0xFF;
}

void mf_classic_auth_init_context(MfClassicAuthContext* auth_ctx, uint8_t sector) {
    furi_assert(auth_ctx);
    auth_ctx->sector = sector;
    auth_ctx->key_a = MF_CLASSIC_NO_KEY;
    auth_ctx->key_b = MF_CLASSIC_NO_KEY;
}

static bool mf_classic_auth(
    FuriHalNfcTxRxContext* tx_rx,
    uint32_t block,
    uint64_t key,
    MfClassicKey key_type,
    Crypto1* crypto,
    bool skip_activate,
    uint32_t cuid) {
    bool auth_success = false;
    memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
    memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
    tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;

    do {
        if(!skip_activate && !furi_hal_nfc_activate_nfca(200, &cuid)) break;
        if(key_type == MfClassicKeyA) {
            tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_A_CMD;
        } else {
            tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_B_CMD;
        }
        tx_rx->tx_data[1] = block;
        tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxNoCrc;
        tx_rx->tx_bits = 2 * 8;
        if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;

        uint32_t nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
        crypto1_init(crypto, key);
        crypto1_word(crypto, nt ^ cuid, 0);
        uint8_t nr[4] = {};
        nfc_util_num2bytes(prng_successor(DWT->CYCCNT, 32), 4, nr);
        for(uint8_t i = 0; i < 4; i++) {
            tx_rx->tx_data[i] = crypto1_byte(crypto, nr[i], 0) ^ nr[i];
            tx_rx->tx_parity[0] |=
                (((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nr[i])) & 0x01) << (7 - i));
        }
        nt = prng_successor(nt, 32);
        for(uint8_t i = 4; i < 8; i++) {
            nt = prng_successor(nt, 8);
            tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ (nt & 0xff);
            tx_rx->tx_parity[0] |=
                (((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nt & 0xff)) & 0x01)
                 << (7 - i));
        }
        tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
        tx_rx->tx_bits = 8 * 8;
        if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
        if(tx_rx->rx_bits == 32) {
            crypto1_word(crypto, 0, 0);
            auth_success = true;
        }
    } while(false);

    return auth_success;
}

bool mf_classic_authenticate(
    FuriHalNfcTxRxContext* tx_rx,
    uint8_t block_num,
    uint64_t key,
    MfClassicKey key_type) {
    furi_assert(tx_rx);

    Crypto1 crypto = {};
    bool key_found = mf_classic_auth(tx_rx, block_num, key, key_type, &crypto, false, 0);
    furi_hal_nfc_sleep();
    return key_found;
}

bool mf_classic_authenticate_skip_activate(
    FuriHalNfcTxRxContext* tx_rx,
    uint8_t block_num,
    uint64_t key,
    MfClassicKey key_type,
    bool skip_activate,
    uint32_t cuid) {
    furi_assert(tx_rx);

    Crypto1 crypto = {};
    bool key_found =
        mf_classic_auth(tx_rx, block_num, key, key_type, &crypto, skip_activate, cuid);
    furi_hal_nfc_sleep();
    return key_found;
}

bool mf_classic_auth_attempt(
    FuriHalNfcTxRxContext* tx_rx,
    Crypto1* crypto,
    MfClassicAuthContext* auth_ctx,
    uint64_t key) {
    furi_assert(tx_rx);
    furi_assert(auth_ctx);
    bool found_key = false;
    bool need_halt = (auth_ctx->key_a == MF_CLASSIC_NO_KEY) &&
                     (auth_ctx->key_b == MF_CLASSIC_NO_KEY);

    if(auth_ctx->key_a == MF_CLASSIC_NO_KEY) {
        // Try AUTH with key A
        if(mf_classic_auth(
               tx_rx,
               mf_classic_get_sector_trailer_block_num_by_sector(auth_ctx->sector),
               key,
               MfClassicKeyA,
               crypto,
               false,
               0)) {
            auth_ctx->key_a = key;
            found_key = true;
        }
    }

    if(need_halt) {
        furi_hal_nfc_sleep();
    }

    if(auth_ctx->key_b == MF_CLASSIC_NO_KEY) {
        // Try AUTH with key B
        if(mf_classic_auth(
               tx_rx,
               mf_classic_get_sector_trailer_block_num_by_sector(auth_ctx->sector),
               key,
               MfClassicKeyB,
               crypto,
               false,
               0)) {
            auth_ctx->key_b = key;
            found_key = true;
        }
    }

    return found_key;
}

bool mf_classic_read_block(
    FuriHalNfcTxRxContext* tx_rx,
    Crypto1* crypto,
    uint8_t block_num,
    MfClassicBlock* block) {
    furi_assert(tx_rx);
    furi_assert(crypto);
    furi_assert(block);

    bool read_block_success = false;
    uint8_t plain_cmd[4] = {MF_CLASSIC_READ_BLOCK_CMD, block_num, 0x00, 0x00};
    nfca_append_crc16(plain_cmd, 2);

    crypto1_encrypt(
        crypto, NULL, plain_cmd, sizeof(plain_cmd) * 8, tx_rx->tx_data, tx_rx->tx_parity);
    tx_rx->tx_bits = sizeof(plain_cmd) * 8;
    tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;

    if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
        if(tx_rx->rx_bits == 8 * (MF_CLASSIC_BLOCK_SIZE + 2)) {
            uint8_t block_received[MF_CLASSIC_BLOCK_SIZE + 2];
            crypto1_decrypt(crypto, tx_rx->rx_data, tx_rx->rx_bits, block_received);
            uint16_t crc_calc = nfca_get_crc16(block_received, MF_CLASSIC_BLOCK_SIZE);
            uint16_t crc_received = (block_received[MF_CLASSIC_BLOCK_SIZE + 1] << 8) |
                                    block_received[MF_CLASSIC_BLOCK_SIZE];
            if(crc_received != crc_calc) {
                FURI_LOG_E(
                    TAG,
                    "Incorrect CRC while reading block %d. Expected %04X, Received %04X",
                    block_num,
                    crc_received,
                    crc_calc);
            } else {
                memcpy(block->value, block_received, MF_CLASSIC_BLOCK_SIZE);
                read_block_success = true;
            }
        }
    }
    return read_block_success;
}

void mf_classic_read_sector(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data, uint8_t sec_num) {
    furi_assert(tx_rx);
    furi_assert(data);

    furi_hal_nfc_sleep();
    bool key_a_found = mf_classic_is_key_found(data, sec_num, MfClassicKeyA);
    bool key_b_found = mf_classic_is_key_found(data, sec_num, MfClassicKeyB);
    uint8_t start_block = mf_classic_get_first_block_num_of_sector(sec_num);
    uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sec_num);
    MfClassicBlock block_tmp = {};
    uint64_t key = 0;
    MfClassicSectorTrailer* sec_tr = mf_classic_get_sector_trailer_by_sector(data, sec_num);
    Crypto1 crypto = {};

    uint8_t blocks_read = 0;
    do {
        if(!key_a_found) break;
        FURI_LOG_D(TAG, "Try to read blocks with key A");
        key = nfc_util_bytes2num(sec_tr->key_a, sizeof(sec_tr->key_a));
        if(!mf_classic_auth(tx_rx, start_block, key, MfClassicKeyA, &crypto, false, 0)) {
            mf_classic_set_key_not_found(data, sec_num, MfClassicKeyA);
            FURI_LOG_D(TAG, "Key %dA not found in read", sec_num);
            break;
        }

        for(size_t i = start_block; i < start_block + total_blocks; i++) {
            if(!mf_classic_is_block_read(data, i)) {
                if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
                    mf_classic_set_block_read(data, i, &block_tmp);
                    blocks_read++;
                } else if(i > start_block) {
                    // Try to re-auth to read block in case prevous block was protected from read
                    furi_hal_nfc_sleep();
                    if(!mf_classic_auth(tx_rx, i, key, MfClassicKeyA, &crypto, false, 0)) {
                        mf_classic_set_key_not_found(data, sec_num, MfClassicKeyA);
                        FURI_LOG_D(TAG, "Key %dA not found in read", sec_num);
                        break;
                    }
                    if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
                        mf_classic_set_block_read(data, i, &block_tmp);
                        blocks_read++;
                    }
                }
            } else {
                blocks_read++;
            }
        }
        FURI_LOG_D(TAG, "Read %d blocks out of %d", blocks_read, total_blocks);
    } while(false);
    do {
        if(blocks_read == total_blocks) break;
        if(!key_b_found) break;
        if(key_a_found) {
            furi_hal_nfc_sleep();
        }
        FURI_LOG_D(TAG, "Try to read blocks with key B");
        key = nfc_util_bytes2num(sec_tr->key_b, sizeof(sec_tr->key_b));
        if(!mf_classic_auth(tx_rx, start_block, key, MfClassicKeyB, &crypto, false, 0)) {
            mf_classic_set_key_not_found(data, sec_num, MfClassicKeyB);
            FURI_LOG_D(TAG, "Key %dB not found in read", sec_num);
            break;
        }

        for(size_t i = start_block; i < start_block + total_blocks; i++) {
            if(!mf_classic_is_block_read(data, i)) {
                if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
                    mf_classic_set_block_read(data, i, &block_tmp);
                    blocks_read++;
                } else if(i > start_block) {
                    // Try to re-auth to read block in case prevous block was protected from read
                    furi_hal_nfc_sleep();
                    if(!mf_classic_auth(tx_rx, i, key, MfClassicKeyB, &crypto, false, 0)) {
                        mf_classic_set_key_not_found(data, sec_num, MfClassicKeyB);
                        FURI_LOG_D(TAG, "Key %dB not found in read", sec_num);
                        break;
                    }
                    if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
                        mf_classic_set_block_read(data, i, &block_tmp);
                        blocks_read++;
                    }
                }
            } else {
                blocks_read++;
            }
        }
        FURI_LOG_D(TAG, "Read %d blocks out of %d", blocks_read, total_blocks);
    } while(false);
}

static bool mf_classic_read_sector_with_reader(
    FuriHalNfcTxRxContext* tx_rx,
    Crypto1* crypto,
    MfClassicSectorReader* sector_reader,
    MfClassicSector* sector) {
    furi_assert(tx_rx);
    furi_assert(sector_reader);
    furi_assert(sector);

    uint64_t key;
    MfClassicKey key_type;
    uint8_t first_block;
    bool sector_read = false;

    furi_hal_nfc_sleep();
    do {
        // Activate card
        first_block = mf_classic_get_first_block_num_of_sector(sector_reader->sector_num);
        if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
            key = sector_reader->key_a;
            key_type = MfClassicKeyA;
        } else if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
            key = sector_reader->key_b;
            key_type = MfClassicKeyB;
        } else {
            break;
        }

        // Auth to first block in sector
        if(!mf_classic_auth(tx_rx, first_block, key, key_type, crypto, false, 0)) {
            // Set key to MF_CLASSIC_NO_KEY to prevent further attempts
            if(key_type == MfClassicKeyA) {
                sector_reader->key_a = MF_CLASSIC_NO_KEY;
            } else {
                sector_reader->key_b = MF_CLASSIC_NO_KEY;
            }
            break;
        }
        sector->total_blocks = mf_classic_get_blocks_num_in_sector(sector_reader->sector_num);

        // Read blocks
        for(uint8_t i = 0; i < sector->total_blocks; i++) {
            if(mf_classic_read_block(tx_rx, crypto, first_block + i, &sector->block[i])) continue;
            if(i == 0) continue;
            // Try to auth to read next block in case previous is locked
            furi_hal_nfc_sleep();
            if(!mf_classic_auth(tx_rx, first_block + i, key, key_type, crypto, false, 0)) continue;
            mf_classic_read_block(tx_rx, crypto, first_block + i, &sector->block[i]);
        }
        // Save sector keys in last block
        if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
            nfc_util_num2bytes(
                sector_reader->key_a, 6, &sector->block[sector->total_blocks - 1].value[0]);
        }
        if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
            nfc_util_num2bytes(
                sector_reader->key_b, 6, &sector->block[sector->total_blocks - 1].value[10]);
        }

        sector_read = true;
    } while(false);

    return sector_read;
}

uint8_t mf_classic_read_card(
    FuriHalNfcTxRxContext* tx_rx,
    MfClassicReader* reader,
    MfClassicData* data) {
    furi_assert(tx_rx);
    furi_assert(reader);
    furi_assert(data);

    uint8_t sectors_read = 0;
    data->type = reader->type;
    data->key_a_mask = 0;
    data->key_b_mask = 0;
    MfClassicSector temp_sector = {};
    for(uint8_t i = 0; i < reader->sectors_to_read; i++) {
        if(mf_classic_read_sector_with_reader(
               tx_rx, &reader->crypto, &reader->sector_reader[i], &temp_sector)) {
            uint8_t first_block =
                mf_classic_get_first_block_num_of_sector(reader->sector_reader[i].sector_num);
            for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
                mf_classic_set_block_read(data, first_block + j, &temp_sector.block[j]);
            }
            if(reader->sector_reader[i].key_a != MF_CLASSIC_NO_KEY) {
                mf_classic_set_key_found(
                    data,
                    reader->sector_reader[i].sector_num,
                    MfClassicKeyA,
                    reader->sector_reader[i].key_a);
            }
            if(reader->sector_reader[i].key_b != MF_CLASSIC_NO_KEY) {
                mf_classic_set_key_found(
                    data,
                    reader->sector_reader[i].sector_num,
                    MfClassicKeyB,
                    reader->sector_reader[i].key_b);
            }
            sectors_read++;
        }
    }

    return sectors_read;
}

uint8_t mf_classic_update_card(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data) {
    furi_assert(tx_rx);
    furi_assert(data);

    uint8_t total_sectors = mf_classic_get_total_sectors_num(data->type);

    for(size_t i = 0; i < total_sectors; i++) {
        mf_classic_read_sector(tx_rx, data, i);
    }
    uint8_t sectors_read = 0;
    uint8_t keys_found = 0;
    mf_classic_get_read_sectors_and_keys(data, &sectors_read, &keys_found);
    FURI_LOG_D(TAG, "Read %d sectors and %d keys", sectors_read, keys_found);

    return sectors_read;
}

bool mf_classic_emulator(MfClassicEmulator* emulator, FuriHalNfcTxRxContext* tx_rx) {
    furi_assert(emulator);
    furi_assert(tx_rx);
    bool command_processed = false;
    bool is_encrypted = false;
    uint8_t plain_data[MF_CLASSIC_MAX_DATA_SIZE];
    MfClassicKey access_key = MfClassicKeyA;
    // Used for decrement and increment - copy to block on transfer
    uint8_t transfer_buf[MF_CLASSIC_BLOCK_SIZE] = {};
    bool transfer_buf_valid = false;

    // Read command
    while(!command_processed) { //-V654
        if(!is_encrypted) {
            crypto1_reset(&emulator->crypto);
            memcpy(plain_data, tx_rx->rx_data, tx_rx->rx_bits / 8);
        } else {
            if(!furi_hal_nfc_tx_rx(tx_rx, 300)) {
                FURI_LOG_D(
                    TAG,
                    "Error in tx rx. Tx :%d bits, Rx: %d bits",
                    tx_rx->tx_bits,
                    tx_rx->rx_bits);
                break;
            }
            crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
        }

        // After increment, decrement or restore the only allowed command is transfer
        uint8_t cmd = plain_data[0];
        if(transfer_buf_valid && cmd != MF_CLASSIC_TRANSFER_CMD) {
            break;
        }

        if(cmd == 0x50 && plain_data[1] == 0x00) {
            FURI_LOG_T(TAG, "Halt received");
            furi_hal_nfc_listen_sleep();
            command_processed = true;
            break;
        }
        if(cmd == MF_CLASSIC_AUTH_KEY_A_CMD || cmd == MF_CLASSIC_AUTH_KEY_B_CMD) {
            uint8_t block = plain_data[1];
            uint64_t key = 0;
            uint8_t sector_trailer_block = mf_classic_get_sector_trailer_num_by_block(block);
            MfClassicSectorTrailer* sector_trailer =
                (MfClassicSectorTrailer*)emulator->data.block[sector_trailer_block].value;
            if(cmd == MF_CLASSIC_AUTH_KEY_A_CMD) {
                key = nfc_util_bytes2num(sector_trailer->key_a, 6);
                access_key = MfClassicKeyA;
            } else {
                key = nfc_util_bytes2num(sector_trailer->key_b, 6);
                access_key = MfClassicKeyB;
            }

            uint32_t nonce = prng_successor(DWT->CYCCNT, 32) ^ 0xAA;
            uint8_t nt[4];
            uint8_t nt_keystream[4];
            nfc_util_num2bytes(nonce, 4, nt);
            nfc_util_num2bytes(nonce ^ emulator->cuid, 4, nt_keystream);
            crypto1_init(&emulator->crypto, key);
            if(!is_encrypted) {
                crypto1_word(&emulator->crypto, emulator->cuid ^ nonce, 0);
                memcpy(tx_rx->tx_data, nt, sizeof(nt));
                tx_rx->tx_parity[0] = 0;
                nfc_util_odd_parity(tx_rx->tx_data, tx_rx->tx_parity, sizeof(nt));
                tx_rx->tx_bits = sizeof(nt) * 8;
                tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
            } else {
                crypto1_encrypt(
                    &emulator->crypto,
                    nt_keystream,
                    nt,
                    sizeof(nt) * 8,
                    tx_rx->tx_data,
                    tx_rx->tx_parity);
                tx_rx->tx_bits = sizeof(nt) * 8;
                tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
            }
            if(!furi_hal_nfc_tx_rx(tx_rx, 500)) {
                FURI_LOG_E(TAG, "Error in NT exchange");
                command_processed = true;
                break;
            }

            if(tx_rx->rx_bits != 64) {
                FURI_LOG_W(TAG, "Incorrect nr + ar length: %d", tx_rx->rx_bits);
                command_processed = true;
                break;
            }

            uint32_t nr = nfc_util_bytes2num(tx_rx->rx_data, 4);
            uint32_t ar = nfc_util_bytes2num(&tx_rx->rx_data[4], 4);

            crypto1_word(&emulator->crypto, nr, 1);
            uint32_t cardRr = ar ^ crypto1_word(&emulator->crypto, 0, 0);
            if(cardRr != prng_successor(nonce, 64)) {
                FURI_LOG_T(TAG, "Wrong AUTH! %08lX != %08lX", cardRr, prng_successor(nonce, 64));
                // Don't send NACK, as the tag doesn't send it
                command_processed = true;
                break;
            }

            uint32_t ans = prng_successor(nonce, 96);
            uint8_t response[4] = {};
            nfc_util_num2bytes(ans, 4, response);
            crypto1_encrypt(
                &emulator->crypto,
                NULL,
                response,
                sizeof(response) * 8,
                tx_rx->tx_data,
                tx_rx->tx_parity);
            tx_rx->tx_bits = sizeof(response) * 8;
            tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;

            is_encrypted = true;
            continue;
        }

        if(!is_encrypted) {
            FURI_LOG_T(TAG, "Invalid command before auth session established: %02X", cmd);
            break;
        }

        if(cmd == MF_CLASSIC_READ_BLOCK_CMD) {
            uint8_t block = plain_data[1];
            uint8_t block_data[MF_CLASSIC_BLOCK_SIZE + 2] = {};
            memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
            if(mf_classic_is_sector_trailer(block)) {
                if(!mf_classic_is_allowed_access(
                       emulator, block, access_key, MfClassicActionKeyARead)) {
                    memset(block_data, 0, 6); //-V1086
                }
                if(!mf_classic_is_allowed_access(
                       emulator, block, access_key, MfClassicActionKeyBRead)) {
                    memset(&block_data[10], 0, 6);
                }
                if(!mf_classic_is_allowed_access(
                       emulator, block, access_key, MfClassicActionACRead)) {
                    memset(&block_data[6], 0, 4);
                }
            } else if(!mf_classic_is_allowed_access(
                          emulator, block, access_key, MfClassicActionDataRead)) {
                // Send NACK
                uint8_t nack = 0x04;
                crypto1_encrypt(
                    &emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
                tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
                tx_rx->tx_bits = 4;
                furi_hal_nfc_tx_rx(tx_rx, 300);
                break;
            }
            nfca_append_crc16(block_data, 16);

            crypto1_encrypt(
                &emulator->crypto,
                NULL,
                block_data,
                sizeof(block_data) * 8,
                tx_rx->tx_data,
                tx_rx->tx_parity);
            tx_rx->tx_bits = (MF_CLASSIC_BLOCK_SIZE + 2) * 8;
            tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
        } else if(cmd == MF_CLASSIC_WRITE_BLOCK_CMD) {
            uint8_t block = plain_data[1];
            if(block > mf_classic_get_total_block_num(emulator->data.type)) {
                break;
            }
            // Send ACK
            uint8_t ack = MF_CLASSIC_ACK_CMD;
            crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
            tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
            tx_rx->tx_bits = 4;

            if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
            if(tx_rx->rx_bits != (MF_CLASSIC_BLOCK_SIZE + 2) * 8) break;

            crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
            uint8_t block_data[MF_CLASSIC_BLOCK_SIZE] = {};
            memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
            if(mf_classic_is_sector_trailer(block)) {
                if(mf_classic_is_allowed_access(
                       emulator, block, access_key, MfClassicActionKeyAWrite)) {
                    memcpy(block_data, plain_data, 6); //-V1086
                }
                if(mf_classic_is_allowed_access(
                       emulator, block, access_key, MfClassicActionKeyBWrite)) {
                    memcpy(&block_data[10], &plain_data[10], 6);
                }
                if(mf_classic_is_allowed_access(
                       emulator, block, access_key, MfClassicActionACWrite)) {
                    memcpy(&block_data[6], &plain_data[6], 4);
                }
            } else {
                if(mf_classic_is_allowed_access(
                       emulator, block, access_key, MfClassicActionDataWrite)) {
                    memcpy(block_data, plain_data, MF_CLASSIC_BLOCK_SIZE);
                } else {
                    break;
                }
            }
            if(memcmp(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE) != 0) {
                memcpy(emulator->data.block[block].value, block_data, MF_CLASSIC_BLOCK_SIZE);
                emulator->data_changed = true;
            }
            // Send ACK
            ack = MF_CLASSIC_ACK_CMD;
            crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
            tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
            tx_rx->tx_bits = 4;
        } else if(
            cmd == MF_CLASSIC_DECREMENT_CMD || cmd == MF_CLASSIC_INCREMENT_CMD ||
            cmd == MF_CLASSIC_RESTORE_CMD) {
            uint8_t block = plain_data[1];

            if(block > mf_classic_get_total_block_num(emulator->data.type)) {
                break;
            }

            MfClassicAction action = MfClassicActionDataDec;
            if(cmd == MF_CLASSIC_INCREMENT_CMD) {
                action = MfClassicActionDataInc;
            }
            if(!mf_classic_is_allowed_access(emulator, block, access_key, action)) {
                break;
            }

            int32_t prev_value;
            uint8_t addr;
            if(!mf_classic_block_to_value(emulator->data.block[block].value, &prev_value, &addr)) {
                break;
            }

            // Send ACK
            uint8_t ack = MF_CLASSIC_ACK_CMD;
            crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
            tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
            tx_rx->tx_bits = 4;

            if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
            if(tx_rx->rx_bits != (sizeof(int32_t) + 2) * 8) break;

            crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
            int32_t value = *(int32_t*)&plain_data[0];
            if(value < 0) {
                value = -value;
            }
            if(cmd == MF_CLASSIC_DECREMENT_CMD) {
                value = -value;
            } else if(cmd == MF_CLASSIC_RESTORE_CMD) {
                value = 0;
            }

            mf_classic_value_to_block(prev_value + value, addr, transfer_buf);
            transfer_buf_valid = true;
            // Commands do not ACK
            tx_rx->tx_bits = 0;
        } else if(cmd == MF_CLASSIC_TRANSFER_CMD) {
            uint8_t block = plain_data[1];
            if(!mf_classic_is_allowed_access(emulator, block, access_key, MfClassicActionDataDec)) {
                break;
            }
            if(memcmp(transfer_buf, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE) !=
               0) {
                memcpy(emulator->data.block[block].value, transfer_buf, MF_CLASSIC_BLOCK_SIZE);
                emulator->data_changed = true;
            }
            transfer_buf_valid = false;

            uint8_t ack = MF_CLASSIC_ACK_CMD;
            crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
            tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
            tx_rx->tx_bits = 4;
        } else {
            FURI_LOG_T(TAG, "Unknown command: %02X", cmd);
            break;
        }
    }

    if(!command_processed) {
        // Send NACK
        uint8_t nack = transfer_buf_valid ? MF_CLASSIC_NACK_BUF_VALID_CMD :
                                            MF_CLASSIC_NACK_BUF_INVALID_CMD;
        if(is_encrypted) {
            crypto1_encrypt(&emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
        } else {
            tx_rx->tx_data[0] = nack;
        }
        tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
        tx_rx->tx_bits = 4;
        furi_hal_nfc_tx_rx(tx_rx, 300);
    }

    return true;
}

void mf_classic_halt(FuriHalNfcTxRxContext* tx_rx, Crypto1* crypto) {
    furi_assert(tx_rx);

    uint8_t plain_data[4] = {0x50, 0x00, 0x00, 0x00};

    nfca_append_crc16(plain_data, 2);
    if(crypto) {
        crypto1_encrypt(
            crypto, NULL, plain_data, sizeof(plain_data) * 8, tx_rx->tx_data, tx_rx->tx_parity);
    } else {
        memcpy(tx_rx->tx_data, plain_data, sizeof(plain_data));
        nfc_util_odd_parity(tx_rx->tx_data, tx_rx->tx_parity, sizeof(plain_data));
    }

    tx_rx->tx_bits = sizeof(plain_data) * 8;
    tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
    furi_hal_nfc_tx_rx(tx_rx, 50);
}

bool mf_classic_write_block(
    FuriHalNfcTxRxContext* tx_rx,
    Crypto1* crypto,
    uint8_t block_num,
    MfClassicBlock* src_block) {
    furi_assert(tx_rx);
    furi_assert(crypto);
    furi_assert(src_block);

    bool write_success = false;
    uint8_t plain_data[MF_CLASSIC_BLOCK_SIZE + 2] = {};
    uint8_t resp;

    do {
        // Send write command
        plain_data[0] = MF_CLASSIC_WRITE_BLOCK_CMD;
        plain_data[1] = block_num;
        nfca_append_crc16(plain_data, 2);
        crypto1_encrypt(crypto, NULL, plain_data, 4 * 8, tx_rx->tx_data, tx_rx->tx_parity);
        tx_rx->tx_bits = 4 * 8;
        tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;

        if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
            if(tx_rx->rx_bits == 4) {
                crypto1_decrypt(crypto, tx_rx->rx_data, 4, &resp);
                if(resp != 0x0A) {
                    FURI_LOG_D(TAG, "NACK received on write cmd: %02X", resp);
                    break;
                }
            } else {
                FURI_LOG_D(TAG, "Not ACK received");
                break;
            }
        } else {
            FURI_LOG_D(TAG, "Failed to send write cmd");
            break;
        }

        // Send data
        memcpy(plain_data, src_block->value, MF_CLASSIC_BLOCK_SIZE);
        nfca_append_crc16(plain_data, MF_CLASSIC_BLOCK_SIZE);
        crypto1_encrypt(
            crypto,
            NULL,
            plain_data,
            (MF_CLASSIC_BLOCK_SIZE + 2) * 8,
            tx_rx->tx_data,
            tx_rx->tx_parity);
        tx_rx->tx_bits = (MF_CLASSIC_BLOCK_SIZE + 2) * 8;
        tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
        if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
            if(tx_rx->rx_bits == 4) {
                crypto1_decrypt(crypto, tx_rx->rx_data, 4, &resp);
                if(resp != MF_CLASSIC_ACK_CMD) {
                    FURI_LOG_D(TAG, "NACK received on sending data");
                    break;
                }
            } else {
                FURI_LOG_D(TAG, "Not ACK received");
                break;
            }
        } else {
            FURI_LOG_D(TAG, "Failed to send data");
            break;
        }

        write_success = true;
    } while(false);

    return write_success;
}

bool mf_classic_auth_write_block(
    FuriHalNfcTxRxContext* tx_rx,
    MfClassicBlock* src_block,
    uint8_t block_num,
    MfClassicKey key_type,
    uint64_t key) {
    furi_assert(tx_rx);
    furi_assert(src_block);

    Crypto1 crypto = {};
    bool write_success = false;

    do {
        furi_hal_nfc_sleep();
        if(!mf_classic_auth(tx_rx, block_num, key, key_type, &crypto, false, 0)) {
            FURI_LOG_D(TAG, "Auth fail");
            break;
        }

        if(!mf_classic_write_block(tx_rx, &crypto, block_num, src_block)) {
            FURI_LOG_D(TAG, "Write fail");
            break;
        }
        write_success = true;

        mf_classic_halt(tx_rx, &crypto);
    } while(false);

    return write_success;
}

bool mf_classic_transfer(FuriHalNfcTxRxContext* tx_rx, Crypto1* crypto, uint8_t block_num) {
    furi_assert(tx_rx);
    furi_assert(crypto);

    // Send transfer command
    uint8_t plain_data[4] = {MF_CLASSIC_TRANSFER_CMD, block_num, 0, 0};
    uint8_t resp = 0;
    bool transfer_success = false;

    nfca_append_crc16(plain_data, 2);
    crypto1_encrypt(
        crypto, NULL, plain_data, sizeof(plain_data) * 8, tx_rx->tx_data, tx_rx->tx_parity);
    tx_rx->tx_bits = sizeof(plain_data) * 8;
    tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;

    do {
        if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
            if(tx_rx->rx_bits == 4) {
                crypto1_decrypt(crypto, tx_rx->rx_data, 4, &resp);
                if(resp != 0x0A) {
                    FURI_LOG_D(TAG, "NACK received on transfer cmd: %02X", resp);
                    break;
                }
            } else {
                FURI_LOG_D(TAG, "Not ACK received");
                break;
            }
        } else {
            FURI_LOG_D(TAG, "Failed to send transfer cmd");
            break;
        }

        transfer_success = true;
    } while(false);

    return transfer_success;
}

bool mf_classic_value_cmd(
    FuriHalNfcTxRxContext* tx_rx,
    Crypto1* crypto,
    uint8_t block_num,
    uint8_t cmd,
    int32_t d_value) {
    furi_assert(tx_rx);
    furi_assert(crypto);
    furi_assert(
        cmd == MF_CLASSIC_INCREMENT_CMD || cmd == MF_CLASSIC_DECREMENT_CMD ||
        cmd == MF_CLASSIC_RESTORE_CMD);
    furi_assert(d_value >= 0);

    uint8_t plain_data[sizeof(d_value) + 2] = {};
    uint8_t resp = 0;
    bool success = false;

    do {
        // Send cmd
        plain_data[0] = cmd;
        plain_data[1] = block_num;
        nfca_append_crc16(plain_data, 2);
        crypto1_encrypt(crypto, NULL, plain_data, 4 * 8, tx_rx->tx_data, tx_rx->tx_parity);
        tx_rx->tx_bits = 4 * 8;
        tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;

        if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
            if(tx_rx->rx_bits == 4) {
                crypto1_decrypt(crypto, tx_rx->rx_data, 4, &resp);
                if(resp != 0x0A) {
                    FURI_LOG_D(TAG, "NACK received on write cmd: %02X", resp);
                    break;
                }
            } else {
                FURI_LOG_D(TAG, "Not ACK received");
                break;
            }
        } else {
            FURI_LOG_D(TAG, "Failed to send write cmd");
            break;
        }

        // Send data
        memcpy(plain_data, &d_value, sizeof(d_value));
        nfca_append_crc16(plain_data, sizeof(d_value));
        crypto1_encrypt(
            crypto, NULL, plain_data, (sizeof(d_value) + 2) * 8, tx_rx->tx_data, tx_rx->tx_parity);
        tx_rx->tx_bits = (sizeof(d_value) + 2) * 8;
        tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
        // inc, dec, restore do not ACK, but they do NACK
        if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
            if(tx_rx->rx_bits == 4) {
                crypto1_decrypt(crypto, tx_rx->rx_data, 4, &resp);
                if(resp != 0x0A) {
                    FURI_LOG_D(TAG, "NACK received on transfer cmd: %02X", resp);
                    break;
                }
            } else {
                FURI_LOG_D(TAG, "Not NACK received");
                break;
            }
        }

        success = true;

    } while(false);

    return success;
}

bool mf_classic_value_cmd_full(
    FuriHalNfcTxRxContext* tx_rx,
    MfClassicBlock* src_block,
    uint8_t block_num,
    MfClassicKey key_type,
    uint64_t key,
    int32_t d_value) {
    furi_assert(tx_rx);
    furi_assert(src_block);

    Crypto1 crypto = {};
    uint8_t cmd;
    bool success = false;

    if(d_value > 0) {
        cmd = MF_CLASSIC_INCREMENT_CMD;
    } else if(d_value < 0) {
        cmd = MF_CLASSIC_DECREMENT_CMD;
        d_value = -d_value;
    } else {
        cmd = MF_CLASSIC_RESTORE_CMD;
    }

    do {
        furi_hal_nfc_sleep();
        if(!mf_classic_auth(tx_rx, block_num, key, key_type, &crypto, false, 0)) {
            FURI_LOG_D(TAG, "Value cmd auth fail");
            break;
        }
        if(!mf_classic_value_cmd(tx_rx, &crypto, block_num, cmd, d_value)) {
            FURI_LOG_D(TAG, "Value cmd inc/dec/res fail");
            break;
        }

        if(!mf_classic_transfer(tx_rx, &crypto, block_num)) {
            FURI_LOG_D(TAG, "Value cmd transfer fail");
            break;
        }

        success = true;

        // Send Halt
        mf_classic_halt(tx_rx, &crypto);
    } while(false);

    return success;
}

bool mf_classic_write_sector(
    FuriHalNfcTxRxContext* tx_rx,
    MfClassicData* dest_data,
    MfClassicData* src_data,
    uint8_t sec_num) {
    furi_assert(tx_rx);
    furi_assert(dest_data);
    furi_assert(src_data);

    uint8_t first_block = mf_classic_get_first_block_num_of_sector(sec_num);
    uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sec_num);
    MfClassicSectorTrailer* sec_tr = mf_classic_get_sector_trailer_by_sector(dest_data, sec_num);
    bool key_a_found = mf_classic_is_key_found(dest_data, sec_num, MfClassicKeyA);
    bool key_b_found = mf_classic_is_key_found(dest_data, sec_num, MfClassicKeyB);

    bool write_success = true;
    for(size_t i = first_block; i < first_block + total_blocks; i++) {
        // Compare blocks
        if(memcmp(dest_data->block[i].value, src_data->block[i].value, MF_CLASSIC_BLOCK_SIZE) !=
           0) {
            if(mf_classic_is_value_block(dest_data, i)) {
                bool key_a_inc_allowed = mf_classic_is_allowed_access_data_block(
                    dest_data, i, MfClassicKeyA, MfClassicActionDataInc);
                bool key_b_inc_allowed = mf_classic_is_allowed_access_data_block(
                    dest_data, i, MfClassicKeyB, MfClassicActionDataInc);
                bool key_a_dec_allowed = mf_classic_is_allowed_access_data_block(
                    dest_data, i, MfClassicKeyA, MfClassicActionDataDec);
                bool key_b_dec_allowed = mf_classic_is_allowed_access_data_block(
                    dest_data, i, MfClassicKeyB, MfClassicActionDataDec);

                int32_t src_value, dst_value;

                mf_classic_block_to_value(src_data->block[i].value, &src_value, NULL);
                mf_classic_block_to_value(dest_data->block[i].value, &dst_value, NULL);

                int32_t diff = src_value - dst_value;

                if(diff > 0) {
                    if(key_a_found && key_a_inc_allowed) {
                        FURI_LOG_I(TAG, "Incrementing block %d with key A by %ld", i, diff);
                        uint64_t key = nfc_util_bytes2num(sec_tr->key_a, 6);
                        if(!mf_classic_value_cmd_full(
                               tx_rx, &src_data->block[i], i, MfClassicKeyA, key, diff)) {
                            FURI_LOG_E(TAG, "Failed to increment block %d", i);
                            write_success = false;
                            break;
                        }
                    } else if(key_b_found && key_b_inc_allowed) {
                        FURI_LOG_I(TAG, "Incrementing block %d with key B by %ld", i, diff);
                        uint64_t key = nfc_util_bytes2num(sec_tr->key_b, 6);
                        if(!mf_classic_value_cmd_full(
                               tx_rx, &src_data->block[i], i, MfClassicKeyB, key, diff)) {
                            FURI_LOG_E(TAG, "Failed to increment block %d", i);
                            write_success = false;
                            break;
                        }
                    } else {
                        FURI_LOG_E(TAG, "Failed to increment block %d", i);
                    }
                } else if(diff < 0) {
                    if(key_a_found && key_a_dec_allowed) {
                        FURI_LOG_I(TAG, "Decrementing block %d with key A by %ld", i, -diff);
                        uint64_t key = nfc_util_bytes2num(sec_tr->key_a, 6);
                        if(!mf_classic_value_cmd_full(
                               tx_rx, &src_data->block[i], i, MfClassicKeyA, key, diff)) {
                            FURI_LOG_E(TAG, "Failed to decrement block %d", i);
                            write_success = false;
                            break;
                        }
                    } else if(key_b_found && key_b_dec_allowed) {
                        FURI_LOG_I(TAG, "Decrementing block %d with key B by %ld", i, diff);
                        uint64_t key = nfc_util_bytes2num(sec_tr->key_b, 6);
                        if(!mf_classic_value_cmd_full(
                               tx_rx, &src_data->block[i], i, MfClassicKeyB, key, diff)) {
                            FURI_LOG_E(TAG, "Failed to decrement block %d", i);
                            write_success = false;
                            break;
                        }
                    } else {
                        FURI_LOG_E(TAG, "Failed to decrement block %d", i);
                    }
                } else {
                    FURI_LOG_E(TAG, "Value block %d address changed, cannot write it", i);
                }
            } else {
                bool key_a_write_allowed = mf_classic_is_allowed_access_data_block(
                    dest_data, i, MfClassicKeyA, MfClassicActionDataWrite);
                bool key_b_write_allowed = mf_classic_is_allowed_access_data_block(
                    dest_data, i, MfClassicKeyB, MfClassicActionDataWrite);

                if(key_a_found && key_a_write_allowed) {
                    FURI_LOG_I(TAG, "Writing block %d with key A", i);
                    uint64_t key = nfc_util_bytes2num(sec_tr->key_a, 6);
                    if(!mf_classic_auth_write_block(
                           tx_rx, &src_data->block[i], i, MfClassicKeyA, key)) {
                        FURI_LOG_E(TAG, "Failed to write block %d", i);
                        write_success = false;
                        break;
                    }
                } else if(key_b_found && key_b_write_allowed) {
                    FURI_LOG_I(TAG, "Writing block %d with key A", i);
                    uint64_t key = nfc_util_bytes2num(sec_tr->key_b, 6);
                    if(!mf_classic_auth_write_block(
                           tx_rx, &src_data->block[i], i, MfClassicKeyB, key)) {
                        FURI_LOG_E(TAG, "Failed to write block %d", i);
                        write_success = false;
                        break;
                    }
                } else {
                    FURI_LOG_E(TAG, "Failed to find key with write access");
                    write_success = false;
                    break;
                }
            }
        } else {
            FURI_LOG_D(TAG, "Blocks %d are equal", i);
        }
    }

    return write_success;
}