#include #include #include #include #include #include "lfrfid_protocols.h" #define JITTER_TIME (20) #define MIN_TIME (64 - JITTER_TIME) #define MAX_TIME (80 + JITTER_TIME) #define PARADOX_DECODED_DATA_SIZE (6) #define PARADOX_PREAMBLE_LENGTH (8) #define PARADOX_ENCODED_BIT_SIZE (96) #define PARADOX_ENCODED_DATA_SIZE (((PARADOX_ENCODED_BIT_SIZE) / 8) + 1) #define PARADOX_ENCODED_DATA_LAST (PARADOX_ENCODED_DATA_SIZE - 1) typedef struct { FSKDemod* fsk_demod; } ProtocolParadoxDecoder; typedef struct { FSKOsc* fsk_osc; uint8_t encoded_index; } ProtocolParadoxEncoder; typedef struct { ProtocolParadoxDecoder decoder; ProtocolParadoxEncoder encoder; uint8_t encoded_data[PARADOX_ENCODED_DATA_SIZE]; uint8_t data[PARADOX_DECODED_DATA_SIZE]; } ProtocolParadox; ProtocolParadox* protocol_paradox_alloc(void) { ProtocolParadox* protocol = malloc(sizeof(ProtocolParadox)); protocol->decoder.fsk_demod = fsk_demod_alloc(MIN_TIME, 6, MAX_TIME, 5); protocol->encoder.fsk_osc = fsk_osc_alloc(8, 10, 50); return protocol; } void protocol_paradox_free(ProtocolParadox* protocol) { fsk_demod_free(protocol->decoder.fsk_demod); fsk_osc_free(protocol->encoder.fsk_osc); free(protocol); } uint8_t* protocol_paradox_get_data(ProtocolParadox* protocol) { return protocol->data; } void protocol_paradox_decoder_start(ProtocolParadox* protocol) { memset(protocol->encoded_data, 0, PARADOX_ENCODED_DATA_SIZE); } static bool protocol_paradox_can_be_decoded(ProtocolParadox* protocol) { // check preamble if(protocol->encoded_data[0] != 0b00001111 || protocol->encoded_data[PARADOX_ENCODED_DATA_LAST] != 0b00001111) return false; for(uint32_t i = PARADOX_PREAMBLE_LENGTH; i < 96; i += 2) { if(bit_lib_get_bit(protocol->encoded_data, i) == bit_lib_get_bit(protocol->encoded_data, i + 1)) { return false; } } return true; } static void protocol_paradox_decode(uint8_t* encoded_data, uint8_t* decoded_data) { for(uint32_t i = PARADOX_PREAMBLE_LENGTH; i < 96; i += 2) { if(bit_lib_get_bits(encoded_data, i, 2) == 0b01) { bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0); } else if(bit_lib_get_bits(encoded_data, i, 2) == 0b10) { bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 1); } } bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0); bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0); bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0); bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0); } bool protocol_paradox_decoder_feed(ProtocolParadox* protocol, bool level, uint32_t duration) { bool value; uint32_t count; fsk_demod_feed(protocol->decoder.fsk_demod, level, duration, &value, &count); if(count > 0) { for(size_t i = 0; i < count; i++) { bit_lib_push_bit(protocol->encoded_data, PARADOX_ENCODED_DATA_SIZE, value); if(protocol_paradox_can_be_decoded(protocol)) { protocol_paradox_decode(protocol->encoded_data, protocol->data); return true; } } } return false; } static void protocol_paradox_encode(const uint8_t* decoded_data, uint8_t* encoded_data) { // preamble bit_lib_set_bits(encoded_data, 0, 0b00001111, 8); for(size_t i = 0; i < 44; i++) { if(bit_lib_get_bit(decoded_data, i)) { bit_lib_set_bits(encoded_data, PARADOX_PREAMBLE_LENGTH + i * 2, 0b10, 2); } else { bit_lib_set_bits(encoded_data, PARADOX_PREAMBLE_LENGTH + i * 2, 0b01, 2); } } } bool protocol_paradox_encoder_start(ProtocolParadox* protocol) { protocol_paradox_encode(protocol->data, (uint8_t*)protocol->encoded_data); protocol->encoder.encoded_index = 0; fsk_osc_reset(protocol->encoder.fsk_osc); return true; } LevelDuration protocol_paradox_encoder_yield(ProtocolParadox* protocol) { bool level; uint32_t duration; bool bit = bit_lib_get_bit(protocol->encoded_data, protocol->encoder.encoded_index); bool advance = fsk_osc_next_half(protocol->encoder.fsk_osc, bit, &level, &duration); if(advance) { bit_lib_increment_index(protocol->encoder.encoded_index, PARADOX_ENCODED_BIT_SIZE); } return level_duration_make(level, duration); } static uint8_t protocol_paradox_calculate_checksum(uint8_t fc, uint16_t card_id) { uint8_t card_hi = (card_id >> 8) & 0xff; uint8_t card_lo = card_id & 0xff; uint8_t arr[5] = {0, 0, fc, card_hi, card_lo}; uint8_t manchester[9]; bit_lib_push_bit(manchester, 9, false); bit_lib_push_bit(manchester, 9, false); bit_lib_push_bit(manchester, 9, false); bit_lib_push_bit(manchester, 9, false); for(uint8_t i = 6; i < 40; i += 1) { if(bit_lib_get_bit(arr, i) == 0b1) { bit_lib_push_bit(manchester, 9, true); bit_lib_push_bit(manchester, 9, false); } else { bit_lib_push_bit(manchester, 9, false); bit_lib_push_bit(manchester, 9, true); } } uint8_t output = bit_lib_crc8(manchester, 9, 0x31, 0x00, true, true, 0x06); return output; } void protocol_paradox_render_data(ProtocolParadox* protocol, FuriString* result) { uint8_t* decoded_data = protocol->data; uint8_t fc = bit_lib_get_bits(decoded_data, 10, 8); uint16_t card_id = bit_lib_get_bits_16(decoded_data, 18, 16); uint8_t card_crc = bit_lib_get_bits_16(decoded_data, 34, 8); uint8_t calc_crc = protocol_paradox_calculate_checksum(fc, card_id); furi_string_printf( result, "FC: %hhu\n" "Card: %hu\n" "CRC: %hhu\n" "Calc CRC: %hhu", fc, card_id, card_crc, calc_crc); if(card_crc != calc_crc) { furi_string_cat(result, "\nCRC Mismatch, Invalid Card!"); } } void protocol_paradox_render_brief_data(ProtocolParadox* protocol, FuriString* result) { uint8_t* decoded_data = protocol->data; uint8_t fc = bit_lib_get_bits(decoded_data, 10, 8); uint16_t card_id = bit_lib_get_bits_16(decoded_data, 18, 16); uint8_t card_crc = bit_lib_get_bits_16(decoded_data, 34, 8); uint8_t calc_crc = protocol_paradox_calculate_checksum(fc, card_id); furi_string_printf(result, "FC: %hhu; Card: %hu", fc, card_id); if(calc_crc != card_crc) { furi_string_cat(result, "\nCRC Mismatch, Invalid Card!"); } } bool protocol_paradox_write_data(ProtocolParadox* protocol, void* data) { LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data; bool result = false; // Correct protocol data by redecoding protocol_paradox_encode(protocol->data, (uint8_t*)protocol->encoded_data); protocol_paradox_decode(protocol->encoded_data, protocol->data); protocol_paradox_encode(protocol->data, (uint8_t*)protocol->encoded_data); if(request->write_type == LFRFIDWriteTypeT5577) { request->t5577.block[0] = LFRFID_T5577_MODULATION_FSK2a | LFRFID_T5577_BITRATE_RF_50 | (3 << LFRFID_T5577_MAXBLOCK_SHIFT); request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32); request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32); request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 32); request->t5577.blocks_to_write = 4; result = true; } return result; } const ProtocolBase protocol_paradox = { .name = "Paradox", .manufacturer = "Paradox", .data_size = PARADOX_DECODED_DATA_SIZE, .features = LFRFIDFeatureASK, .validate_count = 3, .alloc = (ProtocolAlloc)protocol_paradox_alloc, .free = (ProtocolFree)protocol_paradox_free, .get_data = (ProtocolGetData)protocol_paradox_get_data, .decoder = { .start = (ProtocolDecoderStart)protocol_paradox_decoder_start, .feed = (ProtocolDecoderFeed)protocol_paradox_decoder_feed, }, .encoder = { .start = (ProtocolEncoderStart)protocol_paradox_encoder_start, .yield = (ProtocolEncoderYield)protocol_paradox_encoder_yield, }, .render_data = (ProtocolRenderData)protocol_paradox_render_data, .render_brief_data = (ProtocolRenderData)protocol_paradox_render_brief_data, .write_data = (ProtocolWriteData)protocol_paradox_write_data, };