#include "furi_hal_subghz.h" #include "furi_hal_subghz_configs.h" #include #include #include #include #include #include #include #include #include #include #include #define TAG "FuriHalSubGhz" //Initialisation timeout (ms) #define INIT_TIMEOUT 10 static uint32_t furi_hal_subghz_debug_gpio_buff[2]; static bool last_OTG_state = false; volatile FuriHalSubGhz furi_hal_subghz = { .state = SubGhzStateInit, .regulation = SubGhzRegulationTxRx, .preset = FuriHalSubGhzPresetIDLE, .async_mirror_pin = NULL, .radio_type = SubGhzRadioInternal, .spi_bus_handle = &furi_hal_spi_bus_handle_subghz, .cc1101_g0_pin = &gpio_cc1101_g0, }; bool furi_hal_subghz_set_radio_type(SubGhzRadioType state) { furi_hal_subghz.radio_type = state; furi_hal_spi_bus_handle_deinit(furi_hal_subghz.spi_bus_handle); if(state) { furi_hal_subghz.spi_bus_handle = &furi_hal_spi_bus_handle_subghz_ext; furi_hal_subghz.cc1101_g0_pin = &gpio_cc1101_g0_ext; } else { furi_hal_subghz.spi_bus_handle = &furi_hal_spi_bus_handle_subghz; furi_hal_subghz.cc1101_g0_pin = &gpio_cc1101_g0; } furi_hal_spi_bus_handle_init(furi_hal_subghz.spi_bus_handle); furi_hal_subghz_init_check(); return true; } SubGhzRadioType furi_hal_subghz_get_radio_type(void) { return furi_hal_subghz.radio_type; } void furi_hal_subghz_set_async_mirror_pin(const GpioPin* pin) { furi_hal_subghz.async_mirror_pin = pin; } void furi_hal_subghz_init(void) { furi_hal_subghz_init_check(); } void furi_hal_subghz_enable_ext_power(void) { if(furi_hal_subghz.radio_type != SubGhzRadioInternal && !furi_hal_power_is_otg_enabled()) { furi_hal_power_enable_otg(); } } void furi_hal_subghz_disable_ext_power(void) { if(furi_hal_subghz.radio_type != SubGhzRadioInternal && !last_OTG_state) { furi_hal_power_disable_otg(); } } bool furi_hal_subghz_check_radio(void) { bool result = true; furi_hal_subghz_enable_ext_power(); furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); uint8_t ver = cc1101_get_version(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); if((ver != 0) && (ver != 255)) { FURI_LOG_D(TAG, "Radio check ok"); } else { FURI_LOG_D(TAG, "Radio check failed"); furi_hal_subghz_disable_ext_power(); result = false; } return result; } bool furi_hal_subghz_init_check(void) { bool result = true; furi_assert(furi_hal_subghz.state == SubGhzStateInit); furi_hal_subghz.state = SubGhzStateIdle; furi_hal_subghz.preset = FuriHalSubGhzPresetIDLE; last_OTG_state = furi_hal_power_is_otg_enabled(); furi_hal_subghz_enable_ext_power(); furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); #ifdef FURI_HAL_SUBGHZ_TX_GPIO furi_hal_gpio_init(&FURI_HAL_SUBGHZ_TX_GPIO, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); #endif // Reset furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_reset(furi_hal_subghz.spi_bus_handle); cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance); // Prepare GD0 for power on self test furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeInput, GpioPullNo, GpioSpeedLow); // GD0 low cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHW); uint32_t test_start_time = furi_get_tick(); while(furi_hal_gpio_read(furi_hal_subghz.cc1101_g0_pin) != false && result) { if(furi_get_tick() - test_start_time > INIT_TIMEOUT) { result = false; } } // GD0 high cc1101_write_reg( furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV); test_start_time = furi_get_tick(); while(furi_hal_gpio_read(furi_hal_subghz.cc1101_g0_pin) != true && result) { if(furi_get_tick() - test_start_time > INIT_TIMEOUT) { result = false; } } // Reset GD0 to floating state cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance); furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); // RF switches furi_hal_gpio_init(&gpio_rf_sw_0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW); // Go to sleep cc1101_shutdown(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); if(result) { FURI_LOG_I(TAG, "Init OK"); } else { FURI_LOG_E(TAG, "Failed to initialization"); furi_hal_subghz_disable_ext_power(); } return result; } void furi_hal_subghz_sleep() { furi_assert(furi_hal_subghz.state == SubGhzStateIdle); furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_switch_to_idle(furi_hal_subghz.spi_bus_handle); cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance); furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_shutdown(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); furi_hal_subghz_disable_ext_power(); furi_hal_subghz.preset = FuriHalSubGhzPresetIDLE; } void furi_hal_subghz_dump_state() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); printf( "[furi_hal_subghz] cc1101 chip %d, version %d\r\n", cc1101_get_partnumber(furi_hal_subghz.spi_bus_handle), cc1101_get_version(furi_hal_subghz.spi_bus_handle)); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } void furi_hal_subghz_load_preset(FuriHalSubGhzPreset preset) { if(preset == FuriHalSubGhzPresetOok650Async) { furi_hal_subghz_load_registers((uint8_t*)furi_hal_subghz_preset_ook_650khz_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_ook_async_patable); } else if(preset == FuriHalSubGhzPresetOok270Async) { furi_hal_subghz_load_registers((uint8_t*)furi_hal_subghz_preset_ook_270khz_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_ook_async_patable); } else if(preset == FuriHalSubGhzPreset2FSKDev238Async) { furi_hal_subghz_load_registers( (uint8_t*)furi_hal_subghz_preset_2fsk_dev2_38khz_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_2fsk_async_patable); } else if(preset == FuriHalSubGhzPreset2FSKDev476Async) { furi_hal_subghz_load_registers( (uint8_t*)furi_hal_subghz_preset_2fsk_dev47_6khz_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_2fsk_async_patable); } else if(preset == FuriHalSubGhzPresetMSK99_97KbAsync) { furi_hal_subghz_load_registers((uint8_t*)furi_hal_subghz_preset_msk_99_97kb_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_msk_async_patable); } else if(preset == FuriHalSubGhzPresetGFSK9_99KbAsync) { furi_hal_subghz_load_registers((uint8_t*)furi_hal_subghz_preset_gfsk_9_99kb_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_gfsk_async_patable); } else { furi_crash("SubGhz: Missing config."); } furi_hal_subghz.preset = preset; } void furi_hal_subghz_load_custom_preset(uint8_t* preset_data) { //load config furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_reset(furi_hal_subghz.spi_bus_handle); uint32_t i = 0; uint8_t pa[8] = {0}; while(preset_data[i]) { cc1101_write_reg(furi_hal_subghz.spi_bus_handle, preset_data[i], preset_data[i + 1]); i += 2; } furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); //load pa table memcpy(&pa[0], &preset_data[i + 2], 8); furi_hal_subghz_load_patable(pa); furi_hal_subghz.preset = FuriHalSubGhzPresetCustom; //show debug if(furi_hal_rtc_is_flag_set(FuriHalRtcFlagDebug)) { i = 0; FURI_LOG_D(TAG, "Loading custom preset"); while(preset_data[i]) { FURI_LOG_D(TAG, "Reg[%lu]: %02X=%02X", i, preset_data[i], preset_data[i + 1]); i += 2; } for(uint8_t y = i; y < i + 10; y++) { FURI_LOG_D(TAG, "PA[%u]: %02X", y, preset_data[y]); } } } void furi_hal_subghz_load_registers(uint8_t* data) { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_reset(furi_hal_subghz.spi_bus_handle); uint32_t i = 0; while(data[i]) { cc1101_write_reg(furi_hal_subghz.spi_bus_handle, data[i], data[i + 1]); i += 2; } furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } void furi_hal_subghz_load_patable(const uint8_t data[8]) { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_set_pa_table(furi_hal_subghz.spi_bus_handle, data); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } void furi_hal_subghz_write_packet(const uint8_t* data, uint8_t size) { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_flush_tx(furi_hal_subghz.spi_bus_handle); cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_FIFO, size); cc1101_write_fifo(furi_hal_subghz.spi_bus_handle, data, size); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } void furi_hal_subghz_flush_rx() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_flush_rx(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } void furi_hal_subghz_flush_tx() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_flush_tx(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } bool furi_hal_subghz_rx_pipe_not_empty() { CC1101RxBytes status[1]; furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_read_reg( furi_hal_subghz.spi_bus_handle, (CC1101_STATUS_RXBYTES) | CC1101_BURST, (uint8_t*)status); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); // TODO: you can add a buffer overflow flag if needed if(status->NUM_RXBYTES > 0) { return true; } else { return false; } } bool furi_hal_subghz_is_rx_data_crc_valid() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); uint8_t data[1]; cc1101_read_reg(furi_hal_subghz.spi_bus_handle, CC1101_STATUS_LQI | CC1101_BURST, data); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); if(((data[0] >> 7) & 0x01)) { return true; } else { return false; } } void furi_hal_subghz_read_packet(uint8_t* data, uint8_t* size) { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_read_fifo(furi_hal_subghz.spi_bus_handle, data, size); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } void furi_hal_subghz_shutdown() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); // Reset and shutdown cc1101_shutdown(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); furi_hal_subghz_disable_ext_power(); } void furi_hal_subghz_reset() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_switch_to_idle(furi_hal_subghz.spi_bus_handle); cc1101_reset(furi_hal_subghz.spi_bus_handle); cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } void furi_hal_subghz_idle() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_switch_to_idle(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } void furi_hal_subghz_rx() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_switch_to_rx(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } bool furi_hal_subghz_tx() { if(furi_hal_subghz.regulation != SubGhzRegulationTxRx) return false; furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_switch_to_tx(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); return true; } float furi_hal_subghz_get_rssi() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); int32_t rssi_dec = cc1101_get_rssi(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); float rssi = rssi_dec; if(rssi_dec >= 128) { rssi = ((rssi - 256.0f) / 2.0f) - 74.0f; } else { rssi = (rssi / 2.0f) - 74.0f; } return rssi; } uint8_t furi_hal_subghz_get_lqi() { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); uint8_t data[1]; cc1101_read_reg(furi_hal_subghz.spi_bus_handle, CC1101_STATUS_LQI | CC1101_BURST, data); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); return data[0] & 0x7F; } /* Modified by @tkerby & MX to the full YARD Stick One extended range of 281-361 MHz, 378-481 MHz, and 749-962 MHz. These changes are at your own risk. The PLL may not lock and FZ devs have warned of possible damage! */ bool furi_hal_subghz_is_frequency_valid(uint32_t value) { if(!(value >= 281000000 && value <= 361000000) && !(value >= 378000000 && value <= 481000000) && !(value >= 749000000 && value <= 962000000)) { return false; } return true; } uint32_t furi_hal_subghz_set_frequency_and_path(uint32_t value) { // Set these values to the extended frequency range only. They dont define if you can transmit but do select the correct RF path value = furi_hal_subghz_set_frequency(value); if(value >= 281000000 && value <= 361000000) { furi_hal_subghz_set_path(FuriHalSubGhzPath315); } else if(value >= 378000000 && value <= 481000000) { furi_hal_subghz_set_path(FuriHalSubGhzPath433); } else if(value >= 749000000 && value <= 962000000) { furi_hal_subghz_set_path(FuriHalSubGhzPath868); } else { furi_crash("SubGhz: Incorrect frequency during set."); } return value; } bool furi_hal_subghz_is_tx_allowed(uint32_t value) { bool is_extended = false; // TODO: !!! Move file check to another place Storage* storage = furi_record_open(RECORD_STORAGE); FlipperFormat* fff_data_file = flipper_format_file_alloc(storage); if(flipper_format_file_open_existing(fff_data_file, "/ext/subghz/assets/dangerous_settings")) { flipper_format_read_bool( fff_data_file, "yes_i_want_to_destroy_my_flipper", &is_extended, 1); } flipper_format_free(fff_data_file); furi_record_close(RECORD_STORAGE); if(!(value >= 299999755 && value <= 350000335) && !(value >= 386999938 && value <= 464000000) && !(value >= 778999847 && value <= 928000000) && !(is_extended)) { FURI_LOG_I(TAG, "Frequency blocked - outside default range"); return false; } else if( !(value >= 281000000 && value <= 361000000) && !(value >= 378000000 && value <= 481000000) && !(value >= 749000000 && value <= 962000000) && is_extended) { FURI_LOG_I(TAG, "Frequency blocked - outside dangerous range"); return false; } return true; } uint32_t furi_hal_subghz_set_frequency(uint32_t value) { furi_hal_subghz.regulation = SubGhzRegulationTxRx; furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); uint32_t real_frequency = cc1101_set_frequency(furi_hal_subghz.spi_bus_handle, value); cc1101_calibrate(furi_hal_subghz.spi_bus_handle); while(true) { CC1101Status status = cc1101_get_status(furi_hal_subghz.spi_bus_handle); if(status.STATE == CC1101StateIDLE) break; } furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); return real_frequency; } void furi_hal_subghz_set_path(FuriHalSubGhzPath path) { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); if(path == FuriHalSubGhzPath433) { furi_hal_gpio_write(&gpio_rf_sw_0, 0); cc1101_write_reg( furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV); } else if(path == FuriHalSubGhzPath315) { furi_hal_gpio_write(&gpio_rf_sw_0, 1); cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW); } else if(path == FuriHalSubGhzPath868) { furi_hal_gpio_write(&gpio_rf_sw_0, 1); cc1101_write_reg( furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV); } else if(path == FuriHalSubGhzPathIsolate) { furi_hal_gpio_write(&gpio_rf_sw_0, 0); cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG2, CC1101IocfgHW); } else { furi_crash("SubGhz: Incorrect path during set."); } furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } static bool furi_hal_subghz_start_debug() { bool ret = false; if(furi_hal_subghz.async_mirror_pin != NULL) { furi_hal_gpio_init( furi_hal_subghz.async_mirror_pin, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh); ret = true; } return ret; } static bool furi_hal_subghz_stop_debug() { bool ret = false; if(furi_hal_subghz.async_mirror_pin != NULL) { furi_hal_gpio_init( furi_hal_subghz.async_mirror_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); ret = true; } return ret; } volatile FuriHalSubGhzCaptureCallback furi_hal_subghz_capture_callback = NULL; volatile void* furi_hal_subghz_capture_callback_context = NULL; static void furi_hal_subghz_capture_ISR() { if(!furi_hal_gpio_read(furi_hal_subghz.cc1101_g0_pin)) { if(furi_hal_subghz_capture_callback) { if(furi_hal_subghz.async_mirror_pin != NULL) furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, false); furi_hal_subghz_capture_callback( true, TIM2->CNT, (void*)furi_hal_subghz_capture_callback_context); } } else { if(furi_hal_subghz_capture_callback) { if(furi_hal_subghz.async_mirror_pin != NULL) furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, true); furi_hal_subghz_capture_callback( false, TIM2->CNT, (void*)furi_hal_subghz_capture_callback_context); } } //Forced correction for improved accuracy TIM2->CNT = 9; } void furi_hal_subghz_start_async_rx(FuriHalSubGhzCaptureCallback callback, void* context) { furi_assert(furi_hal_subghz.state == SubGhzStateIdle); furi_hal_subghz.state = SubGhzStateAsyncRx; furi_hal_subghz_capture_callback = callback; furi_hal_subghz_capture_callback_context = context; furi_hal_gpio_init( furi_hal_subghz.cc1101_g0_pin, GpioModeInterruptRiseFall, GpioPullUp, GpioSpeedVeryHigh); furi_hal_gpio_add_int_callback( furi_hal_subghz.cc1101_g0_pin, furi_hal_subghz_capture_ISR, furi_hal_subghz_capture_callback); furi_hal_gpio_enable_int_callback(furi_hal_subghz.cc1101_g0_pin); // Timer: base LL_TIM_InitTypeDef TIM_InitStruct = {0}; TIM_InitStruct.Prescaler = 64 - 1; TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP; TIM_InitStruct.Autoreload = 0x7FFFFFFE; TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV4; LL_TIM_Init(TIM2, &TIM_InitStruct); // Timer: advanced LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL); LL_TIM_DisableARRPreload(TIM2); LL_TIM_DisableDMAReq_TRIG(TIM2); LL_TIM_DisableIT_TRIG(TIM2); // Start timer LL_TIM_SetCounter(TIM2, 0); LL_TIM_EnableCounter(TIM2); // Start debug furi_hal_subghz_start_debug(); // Switch to RX furi_hal_subghz_rx(); } void furi_hal_subghz_stop_async_rx() { furi_assert(furi_hal_subghz.state == SubGhzStateAsyncRx); furi_hal_subghz.state = SubGhzStateIdle; // Shutdown radio furi_hal_subghz_idle(); FURI_CRITICAL_ENTER(); LL_TIM_DeInit(TIM2); // Stop debug furi_hal_subghz_stop_debug(); FURI_CRITICAL_EXIT(); furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); } typedef struct { uint32_t* buffer; LevelDuration carry_ld; FuriHalSubGhzAsyncTxCallback callback; void* callback_context; uint64_t duty_high; uint64_t duty_low; } FuriHalSubGhzAsyncTx; static FuriHalSubGhzAsyncTx furi_hal_subghz_async_tx = {0}; static void furi_hal_subghz_async_tx_refill(uint32_t* buffer, size_t samples) { furi_assert(furi_hal_subghz.state == SubGhzStateAsyncTx); while(samples > 0) { bool is_odd = samples % 2; LevelDuration ld; if(level_duration_is_reset(furi_hal_subghz_async_tx.carry_ld)) { ld = furi_hal_subghz_async_tx.callback(furi_hal_subghz_async_tx.callback_context); } else { ld = furi_hal_subghz_async_tx.carry_ld; furi_hal_subghz_async_tx.carry_ld = level_duration_reset(); } if(level_duration_is_wait(ld)) { *buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME; buffer++; samples--; } else if(level_duration_is_reset(ld)) { *buffer = 0; buffer++; samples--; LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_1); LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_1); LL_TIM_EnableIT_UPDATE(TIM2); break; } else { bool level = level_duration_get_level(ld); // Inject guard time if level is incorrect if(is_odd != level) { *buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME; buffer++; samples--; if(is_odd) { furi_hal_subghz_async_tx.duty_high += API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME; } else { furi_hal_subghz_async_tx.duty_low += API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME; } // Special case: prevent buffer overflow if sample is last if(samples == 0) { furi_hal_subghz_async_tx.carry_ld = ld; break; } } uint32_t duration = level_duration_get_duration(ld); furi_assert(duration > 0); *buffer = duration; buffer++; samples--; if(is_odd) { furi_hal_subghz_async_tx.duty_high += duration; } else { furi_hal_subghz_async_tx.duty_low += duration; } } } } static void furi_hal_subghz_async_tx_dma_isr() { furi_assert(furi_hal_subghz.state == SubGhzStateAsyncTx); if(LL_DMA_IsActiveFlag_HT1(DMA1)) { LL_DMA_ClearFlag_HT1(DMA1); furi_hal_subghz_async_tx_refill( furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF); } if(LL_DMA_IsActiveFlag_TC1(DMA1)) { LL_DMA_ClearFlag_TC1(DMA1); furi_hal_subghz_async_tx_refill( furi_hal_subghz_async_tx.buffer + API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF); } } static void furi_hal_subghz_async_tx_timer_isr() { if(LL_TIM_IsActiveFlag_UPDATE(TIM2)) { LL_TIM_ClearFlag_UPDATE(TIM2); if(LL_TIM_GetAutoReload(TIM2) == 0) { if(furi_hal_subghz.state == SubGhzStateAsyncTx) { furi_hal_subghz.state = SubGhzStateAsyncTxLast; LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1); } else if(furi_hal_subghz.state == SubGhzStateAsyncTxLast) { furi_hal_subghz.state = SubGhzStateAsyncTxEnd; //forcibly pulls the pin to the ground so that there is no carrier furi_hal_gpio_init( furi_hal_subghz.cc1101_g0_pin, GpioModeInput, GpioPullDown, GpioSpeedLow); LL_TIM_DisableCounter(TIM2); } else { furi_crash(NULL); } } } } bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void* context) { furi_assert(furi_hal_subghz.state == SubGhzStateIdle); furi_assert(callback); //If transmission is prohibited by regional settings if(furi_hal_subghz.regulation != SubGhzRegulationTxRx) return false; furi_hal_subghz_async_tx.callback = callback; furi_hal_subghz_async_tx.callback_context = context; furi_hal_subghz.state = SubGhzStateAsyncTx; furi_hal_subghz_async_tx.duty_low = 0; furi_hal_subghz_async_tx.duty_high = 0; furi_hal_subghz_async_tx.buffer = malloc(API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * sizeof(uint32_t)); furi_hal_gpio_write(furi_hal_subghz.cc1101_g0_pin, true); furi_hal_gpio_init( furi_hal_subghz.cc1101_g0_pin, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh); // Configure DMA LL_DMA_InitTypeDef dma_config = {0}; dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR); dma_config.MemoryOrM2MDstAddress = (uint32_t)furi_hal_subghz_async_tx.buffer; dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH; dma_config.Mode = LL_DMA_MODE_CIRCULAR; dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT; dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT; dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD; dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD; dma_config.NbData = API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL; dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP; dma_config.Priority = LL_DMA_MODE_NORMAL; LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &dma_config); furi_hal_interrupt_set_isr(FuriHalInterruptIdDma1Ch1, furi_hal_subghz_async_tx_dma_isr, NULL); LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1); LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_1); LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1); // Configure TIM2 LL_TIM_InitTypeDef TIM_InitStruct = {0}; TIM_InitStruct.Prescaler = 64 - 1; TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP; TIM_InitStruct.Autoreload = 1000; TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; LL_TIM_Init(TIM2, &TIM_InitStruct); LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL); LL_TIM_EnableARRPreload(TIM2); // Configure TIM2 CH2 LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0}; TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_TOGGLE; TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE; TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE; TIM_OC_InitStruct.CompareValue = 0; TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_LOW; LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct); LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH2); LL_TIM_DisableMasterSlaveMode(TIM2); furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, furi_hal_subghz_async_tx_timer_isr, NULL); furi_hal_subghz_async_tx_refill( furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL); LL_TIM_EnableDMAReq_UPDATE(TIM2); LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2); // Start counter LL_TIM_GenerateEvent_UPDATE(TIM2); #ifdef FURI_HAL_SUBGHZ_TX_GPIO furi_hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, true); #endif furi_hal_subghz_tx(); LL_TIM_SetCounter(TIM2, 0); LL_TIM_EnableCounter(TIM2); //Signal generation for external G0 const GpioPin* gpio = furi_hal_subghz.cc1101_g0_pin; furi_hal_subghz_debug_gpio_buff[0] = (uint32_t)gpio->pin << GPIO_NUMBER; furi_hal_subghz_debug_gpio_buff[1] = gpio->pin; dma_config.MemoryOrM2MDstAddress = (uint32_t)furi_hal_subghz_debug_gpio_buff; dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (gpio->port->BSRR); dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH; dma_config.Mode = LL_DMA_MODE_CIRCULAR; dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT; dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT; dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD; dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD; dma_config.NbData = 2; dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP; dma_config.Priority = LL_DMA_PRIORITY_VERYHIGH; LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &dma_config); LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_2, 2); LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2); return true; } bool furi_hal_subghz_is_async_tx_complete() { return furi_hal_subghz.state == SubGhzStateAsyncTxEnd; } void furi_hal_subghz_stop_async_tx() { furi_assert( furi_hal_subghz.state == SubGhzStateAsyncTx || furi_hal_subghz.state == SubGhzStateAsyncTxLast || furi_hal_subghz.state == SubGhzStateAsyncTxEnd); // Shutdown radio furi_hal_subghz_idle(); #ifdef FURI_HAL_SUBGHZ_TX_GPIO furi_hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, false); #endif // Deinitialize Timer FURI_CRITICAL_ENTER(); LL_TIM_DeInit(TIM2); furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL); // Deinitialize DMA LL_DMA_DeInit(DMA1, LL_DMA_CHANNEL_1); furi_hal_interrupt_set_isr(FuriHalInterruptIdDma1Ch1, NULL, NULL); // Deinitialize GPIO furi_hal_gpio_init(furi_hal_subghz.cc1101_g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); // Stop debug if(furi_hal_subghz_stop_debug()) { LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2); } FURI_CRITICAL_EXIT(); free(furi_hal_subghz_async_tx.buffer); float duty_cycle = 100.0f * (float)furi_hal_subghz_async_tx.duty_high / ((float)furi_hal_subghz_async_tx.duty_low + (float)furi_hal_subghz_async_tx.duty_high); FURI_LOG_D( TAG, "Async TX Radio stats: on %0.0fus, off %0.0fus, DutyCycle: %0.0f%%", (double)furi_hal_subghz_async_tx.duty_high, (double)furi_hal_subghz_async_tx.duty_low, (double)duty_cycle); furi_hal_subghz.state = SubGhzStateIdle; }