#include #include #include "flipper.h" #include "debug.h" /* TEST: pipe record 1. create pipe record 2. Open/subscribe to it 3. write data 4. check that subscriber get data 5. try to read, get error 6. close record 7. try to write, get error */ static uint8_t pipe_record_value = 0; void pipe_record_cb(const void* value, size_t size) { // hold value to static var pipe_record_value = *((uint8_t*)value); } bool test_furi_pipe_record(FILE* debug_uart) { // 1. create pipe record if(!furi_create("test/pipe", NULL, 0)) { fprintf(debug_uart, "cannot create record\n"); return false; } // 2. Open/subscribe to it FuriRecordHandler pipe_record = furi_open( "test/pipe", false, false, pipe_record_cb, NULL ); if(pipe_record.record == NULL) { fprintf(debug_uart, "cannot open record\n"); return false; } const uint8_t WRITE_VALUE = 1; // 3. write data if(!furi_write(&pipe_record, &WRITE_VALUE, sizeof(uint8_t))) { fprintf(debug_uart, "cannot write to record\n"); return false; } // 4. check that subscriber get data if(pipe_record_value != WRITE_VALUE) { fprintf(debug_uart, "wrong value (get %d, write %d)\n", pipe_record_value, WRITE_VALUE); return false; } // 5. try to read, get error uint8_t read_value = 0; if(furi_read(&pipe_record, &read_value, sizeof(uint8_t))) { fprintf(debug_uart, "reading from pipe record not allowed\n"); return false; } // 6. close record furi_close(&pipe_record); // 7. try to write, get error if(furi_write(&pipe_record, &WRITE_VALUE, sizeof(uint8_t))) { fprintf(debug_uart, "writing to closed record not allowed\n"); return false; } return true; } /* TEST: holding data 1. Create holding record 2. Open/Subscribe on it 3. Write data 4. Check that subscriber get data 5. Read and check data 6. Try to write/read wrong size of data */ static uint8_t holding_record_value = 0; void holding_record_cb(const void* value, size_t size) { // hold value to static var holding_record_value = *((uint8_t*)value); } bool test_furi_holding_data(FILE* debug_uart) { // 1. Create holding record uint8_t holder = 0; if(!furi_create("test/holding", (void*)&holder, sizeof(holder))) { fprintf(debug_uart, "cannot create record\n"); return false; } // 2. Open/Subscribe on it FuriRecordHandler holding_record = furi_open( "test/holding", false, false, holding_record_cb, NULL ); if(holding_record.record == NULL) { fprintf(debug_uart, "cannot open record\n"); return false; } const uint8_t WRITE_VALUE = 1; // 3. write data if(!furi_write(&holding_record, &WRITE_VALUE, sizeof(uint8_t))) { fprintf(debug_uart, "cannot write to record\n"); return false; } // 4. check that subscriber get data if(holding_record_value != WRITE_VALUE) { fprintf(debug_uart, "wrong sub value (get %d, write %d)\n", holding_record_value, WRITE_VALUE); return false; } // 5. Read and check data uint8_t read_value = 0; if(!furi_read(&holding_record, &read_value, sizeof(uint8_t))) { fprintf(debug_uart, "cannot read from record\n"); return false; } if(read_value != WRITE_VALUE) { fprintf(debug_uart, "wrong read value (get %d, write %d)\n", read_value, WRITE_VALUE); return false; } // 6. Try to write/read wrong size of data if(furi_write(&holding_record, &WRITE_VALUE, 100)) { fprintf(debug_uart, "overflowed write not allowed\n"); return false; } if(furi_read(&holding_record, &read_value, 100)) { fprintf(debug_uart, "overflowed read not allowed\n"); return false; } return true; } /* TEST: concurrent access 1. Create holding record 2. Open it twice 3. Change value simultaneously in two app and check integrity */ // TODO this test broke because mutex in furi is not implemented typedef struct { // a and b must be equal uint8_t a; uint8_t b; } ConcurrentValue; void furi_concurent_app(void* p) { FILE* debug_uart = (FILE*)p; FuriRecordHandler holding_record = furi_open( "test/concurrent", false, false, NULL, NULL ); if(holding_record.record == NULL) { fprintf(debug_uart, "cannot open record\n"); furiac_exit(NULL); } for(size_t i = 0; i < 10; i++) { ConcurrentValue* value = (ConcurrentValue*)furi_take(&holding_record); if(value == NULL) { fprintf(debug_uart, "cannot take record\n"); furiac_exit(NULL); } // emulate read-modify-write broken by context switching uint8_t a = value->a; uint8_t b = value->b; a++; b++; delay(2); // this is only for test, do not add delay between take/give in prod! value->a = a; value->b = b; furi_give(&holding_record); } furiac_exit(NULL); } bool test_furi_concurrent_access(FILE* debug_uart) { // 1. Create holding record ConcurrentValue holder = {.a = 0, .b = 0}; if(!furi_create("test/concurrent", (void*)&holder, sizeof(ConcurrentValue))) { fprintf(debug_uart, "cannot create record\n"); return false; } // 2. Open it FuriRecordHandler holding_record = furi_open( "test/concurrent", false, false, NULL, NULL ); if(holding_record.record == NULL) { fprintf(debug_uart, "cannot open record\n"); return false; } // 3. Create second app for interact with it FuriApp* second_app = furiac_start( furi_concurent_app, "furi concurent app", (void*)debug_uart ); // 4. multiply ConcurrentValue::a for(size_t i = 0; i < 4; i++) { ConcurrentValue* value = (ConcurrentValue*)furi_take(&holding_record); if(value == NULL) { fprintf(debug_uart, "cannot take record\n"); return false; } // emulate read-modify-write broken by context switching uint8_t a = value->a; uint8_t b = value->b; a++; b++; value->a = a; delay(10); // this is only for test, do not add delay between take/give in prod! value->b = b; furi_give(&holding_record); } delay(20); if(second_app->handler != NULL) { fprintf(debug_uart, "second app still alive\n"); return false; } if(holder.a != holder.b) { fprintf(debug_uart, "broken integrity: a=%d, b=%d\n", holder.a, holder.b); return false; } return true; } /* TEST: non-existent data 1. Try to open non-existent record 2. Check for NULL handler 3. Try to write/read, get error TODO: implement this test */ bool test_furi_nonexistent_data(FILE* debug_uart) { return true; } /* TEST: mute algorithm 1. Create "parent" application: 1. Create pipe record 2. Open watch handler: no_mute=false, solo=false, subscribe to data. 2. Open handler A: no_mute=false, solo=false, NULL subscriber. Subscribe to state. Try to write data to A and check subscriber. 3. Open handler B: no_mute=true, solo=true, NULL subscriber. Check A state cb get FlipperRecordStateMute. Try to write data to A and check that subscriber get no data. (muted) Try to write data to B and check that subscriber get data. TODO: test 3 not pass beacuse state callback not implemented 4. Open hadler C: no_mute=false, solo=true, NULL subscriber. Try to write data to A and check that subscriber get no data. (muted) Try to write data to B and check that subscriber get data. (not muted because open with no_mute) Try to write data to C and check that subscriber get data. 5. Open handler D: no_mute=false, solo=false, NULL subscriber. Try to write data to A and check that subscriber get no data. (muted) Try to write data to B and check that subscriber get data. (not muted because open with no_mute) Try to write data to C and check that subscriber get data. (not muted because D open without solo) Try to write data to D and check that subscriber get data. 6. Close C, close B. Check A state cb get FlipperRecordStateUnmute Try to write data to A and check that subscriber get data. (unmuted) Try to write data to D and check that subscriber get data. TODO: test 6 not pass beacuse cleanup is not implemented TODO: test 6 not pass because mute algorithm is unfinished. 7. Exit "parent application" Check A state cb get FlipperRecordStateDeleted TODO: test 7 not pass beacuse cleanup is not implemented */ static uint8_t mute_last_value = 0; static FlipperRecordState mute_last_state = 255; void mute_record_cb(const void* value, size_t size) { // hold value to static var mute_last_value = *((uint8_t*)value); } void mute_record_state_cb(FlipperRecordState state) { mute_last_state = state; } void furi_mute_parent_app(void* p) { FILE* debug_uart = (FILE*)p; // 1. Create pipe record if(!furi_create("test/mute", NULL, 0)) { fprintf(debug_uart, "cannot create record\n"); furiac_exit(NULL); } // 2. Open watch handler: solo=false, no_mute=false, subscribe to data FuriRecordHandler watch_handler = furi_open( "test/mute", false, false, mute_record_cb, NULL ); if(watch_handler.record == NULL) { fprintf(debug_uart, "cannot open watch handler\n"); furiac_exit(NULL); } while(1) { // TODO we don't have thread sleep delay(100000); } } bool test_furi_mute_algorithm(FILE* debug_uart) { // 1. Create "parent" application: FuriApp* parent_app = furiac_start( furi_mute_parent_app, "parent app", (void*)debug_uart ); delay(2); // wait creating record // 2. Open handler A: solo=false, no_mute=false, NULL subscriber. Subscribe to state. FuriRecordHandler handler_a = furi_open( "test/mute", false, false, NULL, mute_record_state_cb ); if(handler_a.record == NULL) { fprintf(debug_uart, "cannot open handler A\n"); return false; } uint8_t test_counter = 1; // Try to write data to A and check subscriber if(!furi_write(&handler_a, &test_counter, sizeof(uint8_t))) { fprintf(debug_uart, "write to A failed\n"); return false; } if(mute_last_value != test_counter) { fprintf(debug_uart, "value A mismatch: %d vs %d\n", mute_last_value, test_counter); return false; } // 3. Open handler B: solo=true, no_mute=true, NULL subscriber. FuriRecordHandler handler_b = furi_open( "test/mute", true, true, NULL, NULL ); if(handler_b.record == NULL) { fprintf(debug_uart, "cannot open handler B\n"); return false; } // Check A state cb get FlipperRecordStateMute. if(mute_last_state != FlipperRecordStateMute) { fprintf(debug_uart, "A state is not FlipperRecordStateMute: %d\n", mute_last_state); return false; } test_counter = 2; // Try to write data to A and check that subscriber get no data. (muted) if(furi_write(&handler_a, &test_counter, sizeof(uint8_t))) { fprintf(debug_uart, "A not muted\n"); return false; } if(mute_last_value == test_counter) { fprintf(debug_uart, "value A must be muted\n"); return false; } test_counter = 3; // Try to write data to B and check that subscriber get data. if(!furi_write(&handler_b, &test_counter, sizeof(uint8_t))) { fprintf(debug_uart, "write to B failed\n"); return false; } if(mute_last_value != test_counter) { fprintf(debug_uart, "value B mismatch: %d vs %d\n", mute_last_value, test_counter); return false; } // 4. Open hadler C: solo=true, no_mute=false, NULL subscriber. FuriRecordHandler handler_c = furi_open( "test/mute", true, false, NULL, NULL ); if(handler_c.record == NULL) { fprintf(debug_uart, "cannot open handler C\n"); return false; } // TODO: Try to write data to A and check that subscriber get no data. (muted) // TODO: Try to write data to B and check that subscriber get data. (not muted because open with no_mute) // TODO: Try to write data to C and check that subscriber get data. // 5. Open handler D: solo=false, no_mute=false, NULL subscriber. FuriRecordHandler handler_d = furi_open( "test/mute", false, false, NULL, NULL ); if(handler_d.record == NULL) { fprintf(debug_uart, "cannot open handler D\n"); return false; } // TODO: Try to write data to A and check that subscriber get no data. (muted) // TODO: Try to write data to B and check that subscriber get data. (not muted because open with no_mute) // TODO: Try to write data to C and check that subscriber get data. (not muted because D open without solo) // TODO: Try to write data to D and check that subscriber get data. // 6. Close C, close B. // TODO: Check A state cb get FlipperRecordStateUnmute // TODO: Try to write data to A and check that subscriber get data. (unmuted) // TODO: Try to write data to D and check that subscriber get data. // 7. Exit "parent application" if(!furiac_kill(parent_app)) { fprintf(debug_uart, "kill parent_app fail\n"); return false; } // TODO: Check A state cb get FlipperRecordStateDeleted return true; }