#include "keeloq.h" #include "keeloq_common.h" #include "../subghz_keystore.h" #include #include #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #define TAG "SubGhzProtocolkeeloq" static const SubGhzBlockConst subghz_protocol_keeloq_const = { .te_short = 400, .te_long = 800, .te_delta = 140, .min_count_bit_for_found = 64, }; struct SubGhzProtocolDecoderKeeloq { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; uint16_t header_count; SubGhzKeystore* keystore; const char* manufacture_name; }; struct SubGhzProtocolEncoderKeeloq { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; SubGhzKeystore* keystore; const char* manufacture_name; }; typedef enum { KeeloqDecoderStepReset = 0, KeeloqDecoderStepCheckPreambula, KeeloqDecoderStepSaveDuration, KeeloqDecoderStepCheckDuration, } KeeloqDecoderStep; const SubGhzProtocolDecoder subghz_protocol_keeloq_decoder = { .alloc = subghz_protocol_decoder_keeloq_alloc, .free = subghz_protocol_decoder_keeloq_free, .feed = subghz_protocol_decoder_keeloq_feed, .reset = subghz_protocol_decoder_keeloq_reset, .get_hash_data = subghz_protocol_decoder_keeloq_get_hash_data, .serialize = subghz_protocol_decoder_keeloq_serialize, .deserialize = subghz_protocol_decoder_keeloq_deserialize, .get_string = subghz_protocol_decoder_keeloq_get_string, }; const SubGhzProtocolEncoder subghz_protocol_keeloq_encoder = { .alloc = subghz_protocol_encoder_keeloq_alloc, .free = subghz_protocol_encoder_keeloq_free, .deserialize = subghz_protocol_encoder_keeloq_deserialize, .stop = subghz_protocol_encoder_keeloq_stop, .yield = subghz_protocol_encoder_keeloq_yield, }; const SubGhzProtocol subghz_protocol_keeloq = { .name = SUBGHZ_PROTOCOL_KEELOQ_NAME, .type = SubGhzProtocolTypeDynamic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_keeloq_decoder, .encoder = &subghz_protocol_keeloq_encoder, }; /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance * @param keystore Pointer to a SubGhzKeystore* instance * @param manufacture_name */ static void subghz_protocol_keeloq_check_remote_controller( SubGhzBlockGeneric* instance, SubGhzKeystore* keystore, const char** manufacture_name); void* subghz_protocol_encoder_keeloq_alloc(SubGhzEnvironment* environment) { SubGhzProtocolEncoderKeeloq* instance = malloc(sizeof(SubGhzProtocolEncoderKeeloq)); instance->base.protocol = &subghz_protocol_keeloq; instance->generic.protocol_name = instance->base.protocol->name; instance->keystore = subghz_environment_get_keystore(environment); instance->encoder.repeat = 10; instance->encoder.size_upload = 256; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_runing = false; return instance; } void subghz_protocol_encoder_keeloq_free(void* context) { furi_assert(context); SubGhzProtocolEncoderKeeloq* instance = context; free(instance->encoder.upload); free(instance); } /** * Key generation from simple data * @param instance Pointer to a SubGhzProtocolEncoderKeeloq* instance * @param btn Button number, 4 bit */ static bool subghz_protocol_keeloq_gen_data(SubGhzProtocolEncoderKeeloq* instance, uint8_t btn) { instance->generic.cnt++; uint32_t fix = btn << 28 | instance->generic.serial; uint32_t decrypt = btn << 28 | (instance->generic.serial & 0x3FF) << 16 | //ToDo in some protocols the discriminator is 0 instance->generic.cnt; uint32_t hop = 0; uint64_t man = 0; uint64_t code_found_reverse; int res = 0; for M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) { res = strcmp(string_get_cstr(manufacture_code->name), instance->manufacture_name); if(res == 0) { switch(manufacture_code->type) { case KEELOQ_LEARNING_SIMPLE: //Simple Learning hop = subghz_protocol_keeloq_common_encrypt(decrypt, manufacture_code->key); break; case KEELOQ_LEARNING_NORMAL: //Simple Learning man = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key); hop = subghz_protocol_keeloq_common_encrypt(decrypt, man); break; case KEELOQ_LEARNING_MAGIC_XOR_TYPE_1: man = subghz_protocol_keeloq_common_magic_xor_type1_learning( instance->generic.serial, manufacture_code->key); hop = subghz_protocol_keeloq_common_encrypt(decrypt, man); break; case KEELOQ_LEARNING_UNKNOWN: code_found_reverse = subghz_protocol_blocks_reverse_key( instance->generic.data, instance->generic.data_count_bit); hop = code_found_reverse & 0x00000000ffffffff; FURI_LOG_I(TAG, "hop = %08lX", hop); break; } break; } } if(hop) { uint64_t yek = (uint64_t)fix << 32 | hop; instance->generic.data = subghz_protocol_blocks_reverse_key(yek, instance->generic.data_count_bit); } return true; } bool subghz_protocol_keeloq_create_data( void* context, FlipperFormat* flipper_format, uint32_t serial, uint8_t btn, uint16_t cnt, const char* manufacture_name, uint32_t frequency, FuriHalSubGhzPreset preset) { furi_assert(context); SubGhzProtocolEncoderKeeloq* instance = context; instance->generic.serial = serial; instance->generic.cnt = cnt; instance->manufacture_name = manufacture_name; instance->generic.data_count_bit = 64; bool res = subghz_protocol_keeloq_gen_data(instance, btn); if(res) { res = subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset); } return res; } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderKeeloq instance * @return true On success */ static bool subghz_protocol_encoder_keeloq_get_upload(SubGhzProtocolEncoderKeeloq* instance, uint8_t btn) { furi_assert(instance); //gen new key if(subghz_protocol_keeloq_gen_data(instance, btn)) { //ToDo if you need to add a callback to automatically update the data on the display } else { return false; } size_t index = 0; size_t size_upload = 11 * 2 + 2 + (instance->generic.data_count_bit * 2) + 4; if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } //Send header for(uint8_t i = 11; i > 0; i--) { instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short); } instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short * 10); //Send key data for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_long); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_long); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short); } } // +send 2 status bit instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_long); // send end instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short * 40); return true; } bool subghz_protocol_encoder_keeloq_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderKeeloq* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } subghz_protocol_keeloq_check_remote_controller( &instance->generic, instance->keystore, &instance->manufacture_name); //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); subghz_protocol_encoder_keeloq_get_upload(instance, instance->generic.btn); if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); break; } uint8_t key_data[sizeof(uint64_t)] = {0}; for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF; } if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Unable to add Key"); break; } instance->encoder.is_runing = true; res = true; } while(false); return res; } void subghz_protocol_encoder_keeloq_stop(void* context) { SubGhzProtocolEncoderKeeloq* instance = context; instance->encoder.is_runing = false; } LevelDuration subghz_protocol_encoder_keeloq_yield(void* context) { SubGhzProtocolEncoderKeeloq* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) { instance->encoder.is_runing = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_keeloq_alloc(SubGhzEnvironment* environment) { SubGhzProtocolDecoderKeeloq* instance = malloc(sizeof(SubGhzProtocolDecoderKeeloq)); instance->base.protocol = &subghz_protocol_keeloq; instance->generic.protocol_name = instance->base.protocol->name; instance->keystore = subghz_environment_get_keystore(environment); return instance; } void subghz_protocol_decoder_keeloq_free(void* context) { furi_assert(context); SubGhzProtocolDecoderKeeloq* instance = context; free(instance); } void subghz_protocol_decoder_keeloq_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderKeeloq* instance = context; instance->decoder.parser_step = KeeloqDecoderStepReset; } void subghz_protocol_decoder_keeloq_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderKeeloq* instance = context; switch(instance->decoder.parser_step) { case KeeloqDecoderStepReset: if((level) && DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short) < subghz_protocol_keeloq_const.te_delta) { instance->decoder.parser_step = KeeloqDecoderStepCheckPreambula; instance->header_count++; } break; case KeeloqDecoderStepCheckPreambula: if((!level) && (DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short) < subghz_protocol_keeloq_const.te_delta)) { instance->decoder.parser_step = KeeloqDecoderStepReset; break; } if((instance->header_count > 2) && (DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short * 10) < subghz_protocol_keeloq_const.te_delta * 10)) { // Found header instance->decoder.parser_step = KeeloqDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } else { instance->decoder.parser_step = KeeloqDecoderStepReset; instance->header_count = 0; } break; case KeeloqDecoderStepSaveDuration: if(level) { instance->decoder.te_last = duration; instance->decoder.parser_step = KeeloqDecoderStepCheckDuration; } break; case KeeloqDecoderStepCheckDuration: if(!level) { if(duration >= (subghz_protocol_keeloq_const.te_short * 2 + subghz_protocol_keeloq_const.te_delta)) { // Found end TX instance->decoder.parser_step = KeeloqDecoderStepReset; if(instance->decoder.decode_count_bit >= subghz_protocol_keeloq_const.min_count_bit_for_found) { if(instance->generic.data != instance->decoder.decode_data) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->header_count = 0; } break; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_keeloq_const.te_short) < subghz_protocol_keeloq_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_long) < subghz_protocol_keeloq_const.te_delta)) { if(instance->decoder.decode_count_bit < subghz_protocol_keeloq_const.min_count_bit_for_found) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); } instance->decoder.parser_step = KeeloqDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_keeloq_const.te_long) < subghz_protocol_keeloq_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short) < subghz_protocol_keeloq_const.te_delta)) { if(instance->decoder.decode_count_bit < subghz_protocol_keeloq_const.min_count_bit_for_found) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); } instance->decoder.parser_step = KeeloqDecoderStepSaveDuration; } else { instance->decoder.parser_step = KeeloqDecoderStepReset; instance->header_count = 0; } } else { instance->decoder.parser_step = KeeloqDecoderStepReset; instance->header_count = 0; } break; } } /** * Validation of decrypt data. * @param instance Pointer to a SubGhzBlockGeneric instance * @param decrypt Decrypd data * @param btn Button number, 4 bit * @param end_serial decrement the last 10 bits of the serial number * @return true On success */ static inline bool subghz_protocol_keeloq_check_decrypt( SubGhzBlockGeneric* instance, uint32_t decrypt, uint8_t btn, uint32_t end_serial) { furi_assert(instance); if((decrypt >> 28 == btn) && (((((uint16_t)(decrypt >> 16)) & 0xFF) == end_serial) || ((((uint16_t)(decrypt >> 16)) & 0xFF) == 0))) { instance->cnt = decrypt & 0x0000FFFF; return true; } return false; } /** * Checking the accepted code against the database manafacture key * @param instance Pointer to a SubGhzBlockGeneric* instance * @param fix Fix part of the parcel * @param hop Hop encrypted part of the parcel * @param keystore Pointer to a SubGhzKeystore* instance * @param manufacture_name * @return true on successful search */ static uint8_t subghz_protocol_keeloq_check_remote_controller_selector( SubGhzBlockGeneric* instance, uint32_t fix, uint32_t hop, SubGhzKeystore* keystore, const char** manufacture_name) { // protocol HCS300 uses 10 bits in discriminator, HCS200 uses 8 bits, for backward compatibility, we are looking for the 8-bit pattern // HCS300 -> uint16_t end_serial = (uint16_t)(fix & 0x3FF); // HCS200 -> uint16_t end_serial = (uint16_t)(fix & 0xFF); uint16_t end_serial = (uint16_t)(fix & 0xFF); uint8_t btn = (uint8_t)(fix >> 28); uint32_t decrypt = 0; uint64_t man; uint32_t seed = 0; for M_EACH(manufacture_code, *subghz_keystore_get_data(keystore), SubGhzKeyArray_t) { uint32_t hi = manufacture_code->key >> 32; uint32_t lo = manufacture_code->key & 0xFFFFFFFF; switch(manufacture_code->type) { case KEELOQ_LEARNING_SIMPLE: // Simple Learning decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key); FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s", hi, lo, manufacture_code->name); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } break; case KEELOQ_LEARNING_NORMAL: // Normal Learning // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37 man = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key); FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s", hi, lo, manufacture_code->name); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } break; case KEELOQ_LEARNING_SECURE: man = subghz_protocol_keeloq_common_secure_learning( fix, seed, manufacture_code->key); FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s", hi, lo, manufacture_code->name); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } break; case KEELOQ_LEARNING_MAGIC_XOR_TYPE_1: man = subghz_protocol_keeloq_common_magic_xor_type1_learning( fix, manufacture_code->key); FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s", hi, lo, manufacture_code->name); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } break; case KEELOQ_LEARNING_UNKNOWN: // Simple Learning decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key); FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s", hi, lo, manufacture_code->name); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } // Check for mirrored man uint64_t man_rev = 0; uint64_t man_rev_byte = 0; for(uint8_t i = 0; i < 64; i += 8) { man_rev_byte = (uint8_t)(manufacture_code->key >> i); man_rev = man_rev | man_rev_byte << (56 - i); } decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } //########################### // Normal Learning // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37 man = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key); FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s", hi, lo, manufacture_code->name); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } // Check for mirrored man man = subghz_protocol_keeloq_common_normal_learning(fix, man_rev); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } // Secure Learning man = subghz_protocol_keeloq_common_secure_learning( fix, seed, manufacture_code->key); FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s", hi, lo, manufacture_code->name); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } // Check for mirrored man man = subghz_protocol_keeloq_common_secure_learning(fix, seed, man_rev); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } // Magic xor type1 learning man = subghz_protocol_keeloq_common_magic_xor_type1_learning( fix, manufacture_code->key); FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s", hi, lo, manufacture_code->name); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } // Check for mirrored man man = subghz_protocol_keeloq_common_magic_xor_type1_learning(fix, man_rev); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man); if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) { *manufacture_name = string_get_cstr(manufacture_code->name); return 1; } break; } } *manufacture_name = "Unknown"; instance->cnt = 0; return 0; } static void subghz_protocol_keeloq_check_remote_controller( SubGhzBlockGeneric* instance, SubGhzKeystore* keystore, const char** manufacture_name) { uint64_t key = subghz_protocol_blocks_reverse_key(instance->data, instance->data_count_bit); uint32_t key_fix = key >> 32; uint32_t key_hop = key & 0x00000000ffffffff; // Check key AN-Motors if((key_hop >> 24) == ((key_hop >> 16) & 0x00ff) && (key_fix >> 28) == ((key_hop >> 12) & 0x0f) && (key_hop & 0xFFF) == 0x404) { *manufacture_name = "AN-Motors"; instance->cnt = key_hop >> 16; } else if((key_hop & 0xFFF) == (0x000) && (key_fix >> 28) == ((key_hop >> 12) & 0x0f)) { *manufacture_name = "HCS101"; instance->cnt = key_hop >> 16; } else { subghz_protocol_keeloq_check_remote_controller_selector( instance, key_fix, key_hop, keystore, manufacture_name); } instance->serial = key_fix & 0x0FFFFFFF; instance->btn = key_fix >> 28; } uint8_t subghz_protocol_decoder_keeloq_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderKeeloq* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool subghz_protocol_decoder_keeloq_serialize( void* context, FlipperFormat* flipper_format, uint32_t frequency, FuriHalSubGhzPreset preset) { furi_assert(context); SubGhzProtocolDecoderKeeloq* instance = context; subghz_protocol_keeloq_check_remote_controller( &instance->generic, instance->keystore, &instance->manufacture_name); bool res = subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset); if(res && !flipper_format_write_string_cstr( flipper_format, "Manufacture", instance->manufacture_name)) { FURI_LOG_E(TAG, "Unable to add manufacture name"); res = false; } return res; } bool subghz_protocol_decoder_keeloq_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderKeeloq* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } res = true; } while(false); return res; } void subghz_protocol_decoder_keeloq_get_string(void* context, string_t output) { furi_assert(context); SubGhzProtocolDecoderKeeloq* instance = context; subghz_protocol_keeloq_check_remote_controller( &instance->generic, instance->keystore, &instance->manufacture_name); uint32_t code_found_hi = instance->generic.data >> 32; uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key( instance->generic.data, instance->generic.data_count_bit); uint32_t code_found_reverse_hi = code_found_reverse >> 32; uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; string_cat_printf( output, "%s %dbit\r\n" "Key:%08lX%08lX\r\n" "Fix:0x%08lX Cnt:%04X\r\n" "Hop:0x%08lX Btn:%01lX\r\n" "MF:%s\r\n" "Sn:0x%07lX \r\n", instance->generic.protocol_name, instance->generic.data_count_bit, code_found_hi, code_found_lo, code_found_reverse_hi, instance->generic.cnt, code_found_reverse_lo, instance->generic.btn, instance->manufacture_name, instance->generic.serial); }