#include "infrared_worker.h" #include #include #include #include #include #define INFRARED_WORKER_RX_TIMEOUT INFRARED_RAW_RX_TIMING_DELAY_US #define INFRARED_WORKER_RX_RECEIVED 0x01 #define INFRARED_WORKER_RX_TIMEOUT_RECEIVED 0x02 #define INFRARED_WORKER_OVERRUN 0x04 #define INFRARED_WORKER_EXIT 0x08 #define INFRARED_WORKER_TX_FILL_BUFFER 0x10 #define INFRARED_WORKER_TX_MESSAGE_SENT 0x20 #define INFRARED_WORKER_ALL_RX_EVENTS \ (INFRARED_WORKER_RX_RECEIVED | INFRARED_WORKER_RX_TIMEOUT_RECEIVED | \ INFRARED_WORKER_OVERRUN | INFRARED_WORKER_EXIT) #define INFRARED_WORKER_ALL_TX_EVENTS \ (INFRARED_WORKER_TX_FILL_BUFFER | INFRARED_WORKER_TX_MESSAGE_SENT | INFRARED_WORKER_EXIT) #define INFRARED_WORKER_ALL_EVENTS (INFRARED_WORKER_ALL_RX_EVENTS | INFRARED_WORKER_ALL_TX_EVENTS) typedef enum { InfraredWorkerStateIdle, InfraredWorkerStateRunRx, InfraredWorkerStateRunTx, InfraredWorkerStateWaitTxEnd, InfraredWorkerStateStopTx, InfraredWorkerStateStartTx, } InfraredWorkerState; struct InfraredWorkerSignal { bool decoded; size_t timings_cnt; union { InfraredMessage message; struct { /* +1 is for pause we add at the beginning */ uint32_t timings[MAX_TIMINGS_AMOUNT + 1]; uint32_t frequency; float duty_cycle; } raw; }; }; struct InfraredWorker { FuriThread* thread; FuriStreamBuffer* stream; InfraredWorkerSignal signal; InfraredWorkerState state; InfraredEncoderHandler* infrared_encoder; InfraredDecoderHandler* infrared_decoder; NotificationApp* notification; bool blink_enable; bool decode_enable; union { struct { InfraredWorkerGetSignalCallback get_signal_callback; InfraredWorkerMessageSentCallback message_sent_callback; void* get_signal_context; void* message_sent_context; uint32_t frequency; float duty_cycle; uint32_t tx_raw_cnt; bool need_reinitialization; bool steady_signal_sent; } tx; struct { InfraredWorkerReceivedSignalCallback received_signal_callback; void* received_signal_context; bool overrun; } rx; }; }; typedef struct { uint32_t duration; bool level; FuriHalInfraredTxGetDataState state; } InfraredWorkerTiming; static int32_t infrared_worker_tx_thread(void* context); static FuriHalInfraredTxGetDataState infrared_worker_furi_hal_data_isr_callback(void* context, uint32_t* duration, bool* level); static void infrared_worker_furi_hal_message_sent_isr_callback(void* context); static void infrared_worker_rx_timeout_callback(void* context) { InfraredWorker* instance = context; uint32_t flags_set = furi_thread_flags_set( furi_thread_get_id(instance->thread), INFRARED_WORKER_RX_TIMEOUT_RECEIVED); furi_check(flags_set & INFRARED_WORKER_RX_TIMEOUT_RECEIVED); } static void infrared_worker_rx_callback(void* context, bool level, uint32_t duration) { InfraredWorker* instance = context; furi_assert(duration != 0); LevelDuration level_duration = level_duration_make(level, duration); size_t ret = furi_stream_buffer_send(instance->stream, &level_duration, sizeof(LevelDuration), 0); uint32_t events = (ret == sizeof(LevelDuration)) ? INFRARED_WORKER_RX_RECEIVED : INFRARED_WORKER_OVERRUN; uint32_t flags_set = furi_thread_flags_set(furi_thread_get_id(instance->thread), events); furi_check(flags_set & events); } static void infrared_worker_process_timeout(InfraredWorker* instance) { if(instance->signal.timings_cnt < 2) return; const InfraredMessage* message_decoded = infrared_check_decoder_ready(instance->infrared_decoder); if(message_decoded) { instance->signal.message = *message_decoded; instance->signal.timings_cnt = 0; instance->signal.decoded = true; } else { instance->signal.decoded = false; } if(instance->rx.received_signal_callback) instance->rx.received_signal_callback( instance->rx.received_signal_context, &instance->signal); } static void infrared_worker_process_timings(InfraredWorker* instance, uint32_t duration, bool level) { const InfraredMessage* message_decoded = instance->decode_enable ? infrared_decode(instance->infrared_decoder, level, duration) : NULL; if(message_decoded) { instance->signal.message = *message_decoded; instance->signal.timings_cnt = 0; instance->signal.decoded = true; if(instance->rx.received_signal_callback) instance->rx.received_signal_callback( instance->rx.received_signal_context, &instance->signal); } else { /* Skip first timing if it starts from Space */ if((instance->signal.timings_cnt == 0) && !level) { return; } if(instance->signal.timings_cnt < MAX_TIMINGS_AMOUNT) { instance->signal.raw.timings[instance->signal.timings_cnt] = duration; ++instance->signal.timings_cnt; } else { uint32_t flags_set = furi_thread_flags_set( furi_thread_get_id(instance->thread), INFRARED_WORKER_OVERRUN); furi_check(flags_set & INFRARED_WORKER_OVERRUN); instance->rx.overrun = true; } } } static int32_t infrared_worker_rx_thread(void* thread_context) { InfraredWorker* instance = thread_context; uint32_t events = 0; LevelDuration level_duration; TickType_t last_blink_time = 0; while(1) { events = furi_thread_flags_wait(INFRARED_WORKER_ALL_RX_EVENTS, 0, FuriWaitForever); furi_check(events & INFRARED_WORKER_ALL_RX_EVENTS); /* at least one caught */ if(events & INFRARED_WORKER_RX_RECEIVED) { if(!instance->rx.overrun && instance->blink_enable && ((xTaskGetTickCount() - last_blink_time) > 80)) { last_blink_time = xTaskGetTickCount(); notification_message(instance->notification, &sequence_blink_blue_10); } if(instance->signal.timings_cnt == 0) notification_message(instance->notification, &sequence_display_backlight_on); while(sizeof(LevelDuration) == furi_stream_buffer_receive( instance->stream, &level_duration, sizeof(LevelDuration), 0)) { if(!instance->rx.overrun) { bool level = level_duration_get_level(level_duration); uint32_t duration = level_duration_get_duration(level_duration); infrared_worker_process_timings(instance, duration, level); } } } if(events & INFRARED_WORKER_OVERRUN) { printf("#"); infrared_reset_decoder(instance->infrared_decoder); instance->signal.timings_cnt = 0; if(instance->blink_enable) notification_message(instance->notification, &sequence_set_red_255); } if(events & INFRARED_WORKER_RX_TIMEOUT_RECEIVED) { if(instance->rx.overrun) { printf("\nOVERRUN, max samples: %d\n", MAX_TIMINGS_AMOUNT); instance->rx.overrun = false; if(instance->blink_enable) notification_message(instance->notification, &sequence_reset_red); } else { infrared_worker_process_timeout(instance); } instance->signal.timings_cnt = 0; } if(events & INFRARED_WORKER_EXIT) break; } return 0; } void infrared_worker_rx_set_received_signal_callback( InfraredWorker* instance, InfraredWorkerReceivedSignalCallback callback, void* context) { furi_assert(instance); instance->rx.received_signal_callback = callback; instance->rx.received_signal_context = context; } InfraredWorker* infrared_worker_alloc() { InfraredWorker* instance = malloc(sizeof(InfraredWorker)); instance->thread = furi_thread_alloc_ex("InfraredWorker", 2048, NULL, instance); size_t buffer_size = MAX(sizeof(InfraredWorkerTiming) * (MAX_TIMINGS_AMOUNT + 1), sizeof(LevelDuration) * MAX_TIMINGS_AMOUNT); instance->stream = furi_stream_buffer_alloc(buffer_size, sizeof(InfraredWorkerTiming)); instance->infrared_decoder = infrared_alloc_decoder(); instance->infrared_encoder = infrared_alloc_encoder(); instance->blink_enable = false; instance->decode_enable = true; instance->notification = furi_record_open(RECORD_NOTIFICATION); instance->state = InfraredWorkerStateIdle; return instance; } void infrared_worker_free(InfraredWorker* instance) { furi_assert(instance); furi_assert(instance->state == InfraredWorkerStateIdle); furi_record_close(RECORD_NOTIFICATION); infrared_free_decoder(instance->infrared_decoder); infrared_free_encoder(instance->infrared_encoder); furi_stream_buffer_free(instance->stream); furi_thread_free(instance->thread); free(instance); } void infrared_worker_rx_start(InfraredWorker* instance) { furi_assert(instance); furi_assert(instance->state == InfraredWorkerStateIdle); furi_stream_set_trigger_level(instance->stream, sizeof(LevelDuration)); furi_thread_set_callback(instance->thread, infrared_worker_rx_thread); furi_thread_start(instance->thread); furi_hal_infrared_async_rx_set_capture_isr_callback(infrared_worker_rx_callback, instance); furi_hal_infrared_async_rx_set_timeout_isr_callback( infrared_worker_rx_timeout_callback, instance); furi_hal_infrared_async_rx_start(); furi_hal_infrared_async_rx_set_timeout(INFRARED_WORKER_RX_TIMEOUT); instance->rx.overrun = false; instance->state = InfraredWorkerStateRunRx; } void infrared_worker_rx_stop(InfraredWorker* instance) { furi_assert(instance); furi_assert(instance->state == InfraredWorkerStateRunRx); furi_hal_infrared_async_rx_set_timeout_isr_callback(NULL, NULL); furi_hal_infrared_async_rx_set_capture_isr_callback(NULL, NULL); furi_hal_infrared_async_rx_stop(); furi_thread_flags_set(furi_thread_get_id(instance->thread), INFRARED_WORKER_EXIT); furi_thread_join(instance->thread); FuriStatus status = furi_stream_buffer_reset(instance->stream); furi_assert(status == FuriStatusOk); (void)status; instance->state = InfraredWorkerStateIdle; } bool infrared_worker_signal_is_decoded(const InfraredWorkerSignal* signal) { furi_assert(signal); return signal->decoded; } void infrared_worker_get_raw_signal( const InfraredWorkerSignal* signal, const uint32_t** timings, size_t* timings_cnt) { furi_assert(signal); furi_assert(timings); furi_assert(timings_cnt); *timings = signal->raw.timings; *timings_cnt = signal->timings_cnt; } const InfraredMessage* infrared_worker_get_decoded_signal(const InfraredWorkerSignal* signal) { furi_assert(signal); return &signal->message; } void infrared_worker_rx_enable_blink_on_receiving(InfraredWorker* instance, bool enable) { furi_assert(instance); instance->blink_enable = enable; } void infrared_worker_rx_enable_signal_decoding(InfraredWorker* instance, bool enable) { furi_assert(instance); instance->decode_enable = enable; } void infrared_worker_tx_start(InfraredWorker* instance) { furi_assert(instance); furi_assert(instance->state == InfraredWorkerStateIdle); furi_assert(instance->tx.get_signal_callback); // size have to be greater than api hal infrared async tx buffer size furi_stream_set_trigger_level(instance->stream, sizeof(InfraredWorkerTiming)); furi_thread_set_callback(instance->thread, infrared_worker_tx_thread); instance->tx.steady_signal_sent = false; instance->tx.need_reinitialization = false; furi_hal_infrared_async_tx_set_data_isr_callback( infrared_worker_furi_hal_data_isr_callback, instance); furi_hal_infrared_async_tx_set_signal_sent_isr_callback( infrared_worker_furi_hal_message_sent_isr_callback, instance); instance->state = InfraredWorkerStateStartTx; furi_thread_start(instance->thread); } static void infrared_worker_furi_hal_message_sent_isr_callback(void* context) { InfraredWorker* instance = context; uint32_t flags_set = furi_thread_flags_set( furi_thread_get_id(instance->thread), INFRARED_WORKER_TX_MESSAGE_SENT); furi_check(flags_set & INFRARED_WORKER_TX_MESSAGE_SENT); } static FuriHalInfraredTxGetDataState infrared_worker_furi_hal_data_isr_callback(void* context, uint32_t* duration, bool* level) { furi_assert(context); furi_assert(duration); furi_assert(level); InfraredWorker* instance = context; InfraredWorkerTiming timing; FuriHalInfraredTxGetDataState state; if(sizeof(InfraredWorkerTiming) == furi_stream_buffer_receive(instance->stream, &timing, sizeof(InfraredWorkerTiming), 0)) { *level = timing.level; *duration = timing.duration; state = timing.state; } else { furi_assert(0); *level = 0; *duration = 100; state = FuriHalInfraredTxGetDataStateDone; } uint32_t flags_set = furi_thread_flags_set( furi_thread_get_id(instance->thread), INFRARED_WORKER_TX_FILL_BUFFER); furi_check(flags_set & INFRARED_WORKER_TX_FILL_BUFFER); return state; } static bool infrared_get_new_signal(InfraredWorker* instance) { bool new_signal_obtained = false; InfraredWorkerGetSignalResponse response = instance->tx.get_signal_callback(instance->tx.get_signal_context, instance); if(response == InfraredWorkerGetSignalResponseNew) { uint32_t new_tx_frequency = 0; float new_tx_duty_cycle = 0; if(instance->signal.decoded) { new_tx_frequency = infrared_get_protocol_frequency(instance->signal.message.protocol); new_tx_duty_cycle = infrared_get_protocol_duty_cycle(instance->signal.message.protocol); } else { furi_assert(instance->signal.timings_cnt > 1); new_tx_frequency = instance->signal.raw.frequency; new_tx_duty_cycle = instance->signal.raw.duty_cycle; } instance->tx.tx_raw_cnt = 0; instance->tx.need_reinitialization = (new_tx_frequency != instance->tx.frequency) || !float_is_equal(new_tx_duty_cycle, instance->tx.duty_cycle); instance->tx.frequency = new_tx_frequency; instance->tx.duty_cycle = new_tx_duty_cycle; if(instance->signal.decoded) { infrared_reset_encoder(instance->infrared_encoder, &instance->signal.message); } new_signal_obtained = true; } else if(response == InfraredWorkerGetSignalResponseSame) { new_signal_obtained = true; /* no need to reinit */ } else if(response == InfraredWorkerGetSignalResponseStop) { new_signal_obtained = false; } else { furi_assert(0); } return new_signal_obtained; } static bool infrared_worker_tx_fill_buffer(InfraredWorker* instance) { bool new_data_available = true; InfraredWorkerTiming timing; InfraredStatus status = InfraredStatusError; while(!furi_stream_buffer_is_full(instance->stream) && !instance->tx.need_reinitialization && new_data_available) { if(instance->signal.decoded) { status = infrared_encode(instance->infrared_encoder, &timing.duration, &timing.level); } else { timing.duration = instance->signal.raw.timings[instance->tx.tx_raw_cnt]; /* raw always starts from Mark, but we fill it with space delay at start */ timing.level = (instance->tx.tx_raw_cnt % 2); ++instance->tx.tx_raw_cnt; if(instance->tx.tx_raw_cnt >= instance->signal.timings_cnt) { instance->tx.tx_raw_cnt = 0; status = InfraredStatusDone; } else { status = InfraredStatusOk; } } if(status == InfraredStatusError) { furi_assert(0); new_data_available = false; break; } else if(status == InfraredStatusOk) { timing.state = FuriHalInfraredTxGetDataStateOk; } else if(status == InfraredStatusDone) { timing.state = FuriHalInfraredTxGetDataStateDone; new_data_available = infrared_get_new_signal(instance); if(instance->tx.need_reinitialization || !new_data_available) { timing.state = FuriHalInfraredTxGetDataStateLastDone; } } else { furi_assert(0); } uint32_t written_size = furi_stream_buffer_send(instance->stream, &timing, sizeof(InfraredWorkerTiming), 0); furi_assert(sizeof(InfraredWorkerTiming) == written_size); (void)written_size; } return new_data_available; } static int32_t infrared_worker_tx_thread(void* thread_context) { InfraredWorker* instance = thread_context; furi_assert(instance->state == InfraredWorkerStateStartTx); furi_assert(thread_context); size_t repeats_left = instance->signal.decoded ? infrared_get_protocol_min_repeat_count(instance->signal.message.protocol) : 1; uint32_t events = 0; bool exit_pending = false; bool running = infrared_get_new_signal(instance); furi_assert(running); while(running) { switch(instance->state) { case InfraredWorkerStateStartTx: --repeats_left; /* The first message does not result in TX_MESSAGE_SENT event for some reason */ instance->tx.need_reinitialization = false; const bool new_data_available = infrared_worker_tx_fill_buffer(instance); furi_hal_infrared_async_tx_start(instance->tx.frequency, instance->tx.duty_cycle); if(!new_data_available) { instance->state = InfraredWorkerStateStopTx; } else if(instance->tx.need_reinitialization) { instance->state = InfraredWorkerStateWaitTxEnd; } else { instance->state = InfraredWorkerStateRunTx; } break; case InfraredWorkerStateStopTx: furi_hal_infrared_async_tx_stop(); running = false; break; case InfraredWorkerStateWaitTxEnd: furi_hal_infrared_async_tx_wait_termination(); instance->state = InfraredWorkerStateStartTx; events = furi_thread_flags_get(); if(events & INFRARED_WORKER_EXIT) { running = false; break; } break; case InfraredWorkerStateRunTx: events = furi_thread_flags_wait( INFRARED_WORKER_ALL_TX_EVENTS, FuriFlagWaitAny, FuriWaitForever); furi_check(events & INFRARED_WORKER_ALL_TX_EVENTS); /* at least one caught */ if(events & INFRARED_WORKER_EXIT) { exit_pending = true; } if(events & INFRARED_WORKER_TX_FILL_BUFFER) { infrared_worker_tx_fill_buffer(instance); if(instance->tx.need_reinitialization) { instance->state = InfraredWorkerStateWaitTxEnd; } } if(events & INFRARED_WORKER_TX_MESSAGE_SENT) { if(repeats_left > 0) { --repeats_left; } if(instance->tx.message_sent_callback) { instance->tx.message_sent_callback(instance->tx.message_sent_context); } } if(exit_pending && repeats_left == 0) { instance->state = InfraredWorkerStateStopTx; } break; default: furi_assert(0); break; } } return 0; } void infrared_worker_tx_set_get_signal_callback( InfraredWorker* instance, InfraredWorkerGetSignalCallback callback, void* context) { furi_assert(instance); instance->tx.get_signal_callback = callback; instance->tx.get_signal_context = context; } void infrared_worker_tx_set_signal_sent_callback( InfraredWorker* instance, InfraredWorkerMessageSentCallback callback, void* context) { furi_assert(instance); instance->tx.message_sent_callback = callback; instance->tx.message_sent_context = context; } void infrared_worker_tx_stop(InfraredWorker* instance) { furi_assert(instance); furi_assert(instance->state != InfraredWorkerStateRunRx); furi_thread_flags_set(furi_thread_get_id(instance->thread), INFRARED_WORKER_EXIT); furi_thread_join(instance->thread); furi_hal_infrared_async_tx_set_data_isr_callback(NULL, NULL); furi_hal_infrared_async_tx_set_signal_sent_isr_callback(NULL, NULL); instance->signal.timings_cnt = 0; FuriStatus status = furi_stream_buffer_reset(instance->stream); furi_assert(status == FuriStatusOk); (void)status; instance->state = InfraredWorkerStateIdle; } void infrared_worker_set_decoded_signal(InfraredWorker* instance, const InfraredMessage* message) { furi_assert(instance); furi_assert(message); instance->signal.decoded = true; instance->signal.message = *message; } void infrared_worker_set_raw_signal( InfraredWorker* instance, const uint32_t* timings, size_t timings_cnt, uint32_t frequency, float duty_cycle) { furi_assert(instance); furi_assert(timings); furi_assert(timings_cnt > 0); furi_assert((frequency <= INFRARED_MAX_FREQUENCY) && (frequency >= INFRARED_MIN_FREQUENCY)); furi_assert((duty_cycle < 1.0f) && (duty_cycle > 0.0f)); size_t max_copy_num = COUNT_OF(instance->signal.raw.timings) - 1; furi_check(timings_cnt <= max_copy_num); instance->signal.raw.frequency = frequency; instance->signal.raw.duty_cycle = duty_cycle; instance->signal.raw.timings[0] = INFRARED_RAW_TX_TIMING_DELAY_US; memcpy(&instance->signal.raw.timings[1], timings, timings_cnt * sizeof(uint32_t)); instance->signal.decoded = false; instance->signal.timings_cnt = timings_cnt + 1; } InfraredWorkerGetSignalResponse infrared_worker_tx_get_signal_steady_callback(void* context, InfraredWorker* instance) { UNUSED(context); InfraredWorkerGetSignalResponse response = instance->tx.steady_signal_sent ? InfraredWorkerGetSignalResponseSame : InfraredWorkerGetSignalResponseNew; instance->tx.steady_signal_sent = true; return response; }