#include "spectrum_analyzer.h" #include "spectrum_analyzer_worker.h" #include #include #include "helpers/radio_device_loader.h" #include struct SpectrumAnalyzerWorker { FuriThread* thread; bool should_work; SpectrumAnalyzerWorkerCallback callback; void* callback_context; const SubGhzDevice* radio_device; uint32_t channel0_frequency; uint32_t spacing; uint8_t width; uint8_t modulation; float max_rssi; uint8_t max_rssi_dec; uint8_t max_rssi_channel; uint8_t channel_ss[NUM_CHANNELS]; }; /* set the channel bandwidth */ void spectrum_analyzer_worker_set_filter(SpectrumAnalyzerWorker* instance) { uint8_t filter_config[2][2] = { {CC1101_MDMCFG4, 0}, {0, 0}, }; // FURI_LOG_D("SpectrumWorker", "spectrum_analyzer_worker_set_filter: width = %u", instance->width); /* channel spacing should fit within 80% of channel filter bandwidth */ switch(instance->width) { case NARROW: filter_config[0][1] = 0xFC; /* 39.2 kHz / .8 = 49 kHz --> 58 kHz */ break; case ULTRAWIDE: filter_config[0][1] = 0x0C; /* 784 kHz / .8 = 980 kHz --> 812 kHz */ break; default: filter_config[0][1] = 0x6C; /* 196 kHz / .8 = 245 kHz --> 270 kHz */ break; } UNUSED(filter_config); // furi_hal_subghz_load_registers((uint8_t*)filter_config); } static int32_t spectrum_analyzer_worker_thread(void* context) { furi_assert(context); SpectrumAnalyzerWorker* instance = context; FURI_LOG_D("SpectrumWorker", "spectrum_analyzer_worker_thread: Start"); // Start CC1101 subghz_devices_reset(instance->radio_device); subghz_devices_load_preset(instance->radio_device, FuriHalSubGhzPresetOok650Async, NULL); subghz_devices_set_frequency(instance->radio_device, 433920000); subghz_devices_flush_rx(instance->radio_device); subghz_devices_set_rx(instance->radio_device); // Default modulation const uint8_t default_modulation[] = { /* Frequency Synthesizer Control */ CC1101_FSCTRL0, 0x00, CC1101_FSCTRL1, 0x12, // IF = (26*10^6) / (2^10) * 0x12 = 304687.5 Hz // Modem Configuration // CC1101_MDMCFG0, // 0x00, // Channel spacing is 25kHz // CC1101_MDMCFG1, // 0x00, // Channel spacing is 25kHz // CC1101_MDMCFG2, // 0x30, // Format ASK/OOK, No preamble/sync // CC1101_MDMCFG3, // 0x32, // Data rate is 121.399 kBaud CC1101_MDMCFG4, 0x6C, // Rx BW filter is 270.83 kHz /* Frequency Offset Compensation Configuration */ // CC1101_FOCCFG, // 0x18, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off /* Automatic Gain Control */ // CC1101_AGCCTRL0, // 0x91, // 10 - Medium hysteresis, medium asymmetric dead zone, medium gain ; 01 - 16 samples agc; 00 - Normal AGC, 01 - 8dB boundary // CC1101_AGCCTRL1, // 0x0, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET CC1101_AGCCTRL2, 0xC0, // 03 - The 3 highest DVGA gain settings can not be used; 000 - MAX LNA+LNA2; 000 - MAIN_TARGET 24 dB /* Frontend configuration */ // CC1101_FREND0, // 0x11, // Adjusts current TX LO buffer + high is PATABLE[1] // CC1101_FREND1, // 0xB6, // CC1101_TEST2, 0x88, CC1101_TEST1, 0x31, CC1101_TEST0, 0x09, /* End */ 0, 0, // ook_async_patable 0x00, 0xC0, // 12dBm 0xC0, 10dBm 0xC5, 7dBm 0xCD, 5dBm 0x86, 0dBm 0x50, -6dBm 0x37, -10dBm 0x26, -15dBm 0x1D, -20dBm 0x17, -30dBm 0x03 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; // Narrow modulation const uint8_t narrow_modulation[] = { /* Frequency Synthesizer Control */ CC1101_FSCTRL0, 0x00, CC1101_FSCTRL1, 0x00, // IF = (26*10^6) / (2^10) * 0x00 = 0 Hz // Modem Configuration // CC1101_MDMCFG0, // 0x00, // Channel spacing is 25kHz // CC1101_MDMCFG1, // 0x00, // Channel spacing is 25kHz // CC1101_MDMCFG2, // 0x30, // Format ASK/OOK, No preamble/sync // CC1101_MDMCFG3, // 0x32, // Data rate is 121.399 kBaud CC1101_MDMCFG4, 0xFC, // Rx BW filter is 58.04 kHz /* Frequency Offset Compensation Configuration */ // CC1101_FOCCFG, // 0x18, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off /* Automatic Gain Control */ CC1101_AGCCTRL0, 0x30, // 00 - NO hysteresis, symmetric dead zone, high gain ; 11 - 32 samples agc; 00 - Normal AGC, 00 - 8dB boundary CC1101_AGCCTRL1, 0x0, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET CC1101_AGCCTRL2, 0x84, // 02 - The 2 highest DVGA gain settings can not be used; 000 - MAX LNA+LNA2; 100 - MAIN_TARGET 36 dB /* Frontend configuration */ // CC1101_FREND0, // 0x11, // Adjusts current TX LO buffer + high is PATABLE[1] // CC1101_FREND1, // 0xB6, // CC1101_TEST2, 0x88, CC1101_TEST1, 0x31, CC1101_TEST0, 0x09, /* End */ 0, 0, // ook_async_patable 0x00, 0xC0, // 12dBm 0xC0, 10dBm 0xC5, 7dBm 0xCD, 5dBm 0x86, 0dBm 0x50, -6dBm 0x37, -10dBm 0x26, -15dBm 0x1D, -20dBm 0x17, -30dBm 0x03 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; const uint8_t* modulations[] = {default_modulation, narrow_modulation}; while(instance->should_work) { furi_delay_ms(50); // FURI_LOG_T("SpectrumWorker", "spectrum_analyzer_worker_thread: Worker Loop"); subghz_devices_idle(instance->radio_device); subghz_devices_load_preset( instance->radio_device, FuriHalSubGhzPresetCustom, (uint8_t*)modulations[instance->modulation]); //subghz_devices_load_preset( // instance->radio_device, FuriHalSubGhzPresetCustom, (uint8_t*)default_modulation); //furi_hal_subghz_load_custom_preset(modulations[instance->modulation]); // TODO: Check filter! // spectrum_analyzer_worker_set_filter(instance); instance->max_rssi_dec = 0; // Visit each channel non-consecutively for(uint8_t ch_offset = 0, chunk = 0; ch_offset < CHUNK_SIZE; ++chunk >= NUM_CHUNKS && ++ch_offset && (chunk = 0)) { uint8_t ch = chunk * CHUNK_SIZE + ch_offset; if(subghz_devices_is_frequency_valid( instance->radio_device, instance->channel0_frequency + (ch * instance->spacing))) subghz_devices_set_frequency( instance->radio_device, instance->channel0_frequency + (ch * instance->spacing)); subghz_devices_set_rx(instance->radio_device); furi_delay_ms(3); // dec dBm //max_ss = 127 -> -10.5 //max_ss = 0 -> -74.0 //max_ss = 255 -> -74.5 //max_ss = 128 -> -138.0 instance->channel_ss[ch] = (subghz_devices_get_rssi(instance->radio_device) + 138) * 2; if(instance->channel_ss[ch] > instance->max_rssi_dec) { instance->max_rssi_dec = instance->channel_ss[ch]; instance->max_rssi = (instance->channel_ss[ch] / 2) - 138; instance->max_rssi_channel = ch; } subghz_devices_idle(instance->radio_device); } // FURI_LOG_T("SpectrumWorker", "channel_ss[0]: %u", instance->channel_ss[0]); // Report results back to main thread if(instance->callback) { instance->callback( (void*)&(instance->channel_ss), instance->max_rssi, instance->max_rssi_dec, instance->max_rssi_channel, instance->callback_context); } } return 0; } SpectrumAnalyzerWorker* spectrum_analyzer_worker_alloc() { FURI_LOG_D("Spectrum", "spectrum_analyzer_worker_alloc: Start"); SpectrumAnalyzerWorker* instance = malloc(sizeof(SpectrumAnalyzerWorker)); instance->thread = furi_thread_alloc(); furi_thread_set_name(instance->thread, "SpectrumWorker"); furi_thread_set_stack_size(instance->thread, 2048); furi_thread_set_context(instance->thread, instance); furi_thread_set_callback(instance->thread, spectrum_analyzer_worker_thread); subghz_devices_init(); instance->radio_device = radio_device_loader_set(instance->radio_device, SubGhzRadioDeviceTypeExternalCC1101); FURI_LOG_D("Spectrum", "spectrum_analyzer_worker_alloc: End"); return instance; } void spectrum_analyzer_worker_free(SpectrumAnalyzerWorker* instance) { FURI_LOG_D("Spectrum", "spectrum_analyzer_worker_free"); furi_assert(instance); furi_thread_free(instance->thread); subghz_devices_sleep(instance->radio_device); radio_device_loader_end(instance->radio_device); subghz_devices_deinit(); free(instance); } void spectrum_analyzer_worker_set_callback( SpectrumAnalyzerWorker* instance, SpectrumAnalyzerWorkerCallback callback, void* context) { furi_assert(instance); instance->callback = callback; instance->callback_context = context; } void spectrum_analyzer_worker_set_frequencies( SpectrumAnalyzerWorker* instance, uint32_t channel0_frequency, uint32_t spacing, uint8_t width) { furi_assert(instance); FURI_LOG_D( "SpectrumWorker", "spectrum_analyzer_worker_set_frequencies - channel0_frequency= %lu - spacing = %lu - width = %u", channel0_frequency, spacing, width); instance->channel0_frequency = channel0_frequency; instance->spacing = spacing; instance->width = width; } void spectrum_analyzer_worker_set_modulation(SpectrumAnalyzerWorker* instance, uint8_t modulation) { furi_assert(instance); FURI_LOG_D( "SpectrumWorker", "spectrum_analyzer_worker_set_modulation - modulation = %u", modulation); instance->modulation = modulation; } void spectrum_analyzer_worker_start(SpectrumAnalyzerWorker* instance) { FURI_LOG_D("Spectrum", "spectrum_analyzer_worker_start"); furi_assert(instance); furi_assert(instance->should_work == false); instance->should_work = true; furi_thread_start(instance->thread); } void spectrum_analyzer_worker_stop(SpectrumAnalyzerWorker* instance) { FURI_LOG_D("Spectrum", "spectrum_analyzer_worker_stop"); furi_assert(instance); furi_assert(instance->should_work == true); instance->should_work = false; furi_thread_join(instance->thread); }