#include "secplus_v2.h" #include #include #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" /* * Help * https://github.com/argilo/secplus * https://github.com/merbanan/rtl_433/blob/master/src/devices/secplus_v2.c */ #define TAG "SubGhzProtocoSecPlus_v2" #define SECPLUS_V2_HEADER 0x3C0000000000 #define SECPLUS_V2_HEADER_MASK 0xFFFF3C0000000000 #define SECPLUS_V2_PACKET_1 0x000000000000 #define SECPLUS_V2_PACKET_2 0x010000000000 #define SECPLUS_V2_PACKET_MASK 0x30000000000 static const SubGhzBlockConst subghz_protocol_secplus_v2_const = { .te_short = 250, .te_long = 500, .te_delta = 110, .min_count_bit_for_found = 62, }; struct SubGhzProtocolDecoderSecPlus_v2 { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; ManchesterState manchester_saved_state; uint64_t secplus_packet_1; }; struct SubGhzProtocolEncoderSecPlus_v2 { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; uint64_t secplus_packet_1; }; typedef enum { SecPlus_v2DecoderStepReset = 0, SecPlus_v2DecoderStepDecoderData, } SecPlus_v2DecoderStep; const SubGhzProtocolDecoder subghz_protocol_secplus_v2_decoder = { .alloc = subghz_protocol_decoder_secplus_v2_alloc, .free = subghz_protocol_decoder_secplus_v2_free, .feed = subghz_protocol_decoder_secplus_v2_feed, .reset = subghz_protocol_decoder_secplus_v2_reset, .get_hash_data = subghz_protocol_decoder_secplus_v2_get_hash_data, .serialize = subghz_protocol_decoder_secplus_v2_serialize, .deserialize = subghz_protocol_decoder_secplus_v2_deserialize, .get_string = subghz_protocol_decoder_secplus_v2_get_string, }; const SubGhzProtocolEncoder subghz_protocol_secplus_v2_encoder = { .alloc = subghz_protocol_encoder_secplus_v2_alloc, .free = subghz_protocol_encoder_secplus_v2_free, .deserialize = subghz_protocol_encoder_secplus_v2_deserialize, .stop = subghz_protocol_encoder_secplus_v2_stop, .yield = subghz_protocol_encoder_secplus_v2_yield, }; const SubGhzProtocol subghz_protocol_secplus_v2 = { .name = SUBGHZ_PROTOCOL_SECPLUS_V2_NAME, .type = SubGhzProtocolTypeDynamic, .flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_secplus_v2_decoder, .encoder = &subghz_protocol_secplus_v2_encoder, }; void* subghz_protocol_encoder_secplus_v2_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderSecPlus_v2* instance = malloc(sizeof(SubGhzProtocolEncoderSecPlus_v2)); instance->base.protocol = &subghz_protocol_secplus_v2; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 256; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_runing = false; return instance; } void subghz_protocol_encoder_secplus_v2_free(void* context) { furi_assert(context); SubGhzProtocolEncoderSecPlus_v2* instance = context; free(instance->encoder.upload); free(instance); } static bool subghz_protocol_secplus_v2_mix_invet(uint8_t invert, uint16_t p[]) { // selectively invert buffers switch(invert) { case 0x00: // 0b0000 (True, True, False), p[0] = ~p[0] & 0x03FF; p[1] = ~p[1] & 0x03FF; break; case 0x01: // 0b0001 (False, True, False), p[1] = ~p[1] & 0x03FF; break; case 0x02: // 0b0010 (False, False, True), p[2] = ~p[2] & 0x03FF; break; case 0x04: // 0b0100 (True, True, True), p[0] = ~p[0] & 0x03FF; p[1] = ~p[1] & 0x03FF; p[2] = ~p[2] & 0x03FF; break; case 0x05: // 0b0101 (True, False, True), case 0x0a: // 0b1010 (True, False, True), p[0] = ~p[0] & 0x03FF; p[2] = ~p[2] & 0x03FF; break; case 0x06: // 0b0110 (False, True, True), p[1] = ~p[1] & 0x03FF; p[2] = ~p[2] & 0x03FF; break; case 0x08: // 0b1000 (True, False, False), p[0] = ~p[0] & 0x03FF; break; case 0x09: // 0b1001 (False, False, False), break; default: FURI_LOG_E(TAG, "Invert FAIL"); return false; } return true; } static bool subghz_protocol_secplus_v2_mix_order_decode(uint8_t order, uint16_t p[]) { uint16_t a = p[0], b = p[1], c = p[2]; // selectively reorder buffers switch(order) { case 0x06: // 0b0110 2, 1, 0], case 0x09: // 0b1001 2, 1, 0], p[2] = a; p[1] = b; p[0] = c; break; case 0x08: // 0b1000 1, 2, 0], case 0x04: // 0b0100 1, 2, 0], p[1] = a; p[2] = b; p[0] = c; break; case 0x01: // 0b0001 2, 0, 1], p[2] = a; p[0] = b; p[1] = c; break; case 0x00: // 0b0000 0, 2, 1], p[0] = a; p[2] = b; p[1] = c; break; case 0x05: // 0b0101 1, 0, 2], p[1] = a; p[0] = b; p[2] = c; break; case 0x02: // 0b0010 0, 1, 2], case 0x0A: // 0b1010 0, 1, 2], p[0] = a; p[1] = b; p[2] = c; break; default: FURI_LOG_E(TAG, "Order FAIL"); return false; } return true; } static bool subghz_protocol_secplus_v2_mix_order_encode(uint8_t order, uint16_t p[]) { uint16_t a, b, c; // selectively reorder buffers switch(order) { case 0x06: // 0b0110 2, 1, 0], case 0x09: // 0b1001 2, 1, 0], a = p[2]; b = p[1]; c = p[0]; break; case 0x08: // 0b1000 1, 2, 0], case 0x04: // 0b0100 1, 2, 0], a = p[1]; b = p[2]; c = p[0]; break; case 0x01: // 0b0001 2, 0, 1], a = p[2]; b = p[0]; c = p[1]; break; case 0x00: // 0b0000 0, 2, 1], a = p[0]; b = p[2]; c = p[1]; break; case 0x05: // 0b0101 1, 0, 2], a = p[1]; b = p[0]; c = p[2]; break; case 0x02: // 0b0010 0, 1, 2], case 0x0A: // 0b1010 0, 1, 2], a = p[0]; b = p[1]; c = p[2]; break; default: FURI_LOG_E(TAG, "Order FAIL"); return false; } p[0] = a; p[1] = b; p[2] = c; return true; } /** * Security+ 2.0 half-message decoding * @param data data * @param roll_array[] return roll_array part * @param fixed[] return fixed part * @return true On success */ static bool subghz_protocol_secplus_v2_decode_half(uint64_t data, uint8_t roll_array[], uint32_t* fixed) { uint8_t order = (data >> 34) & 0x0f; uint8_t invert = (data >> 30) & 0x0f; uint16_t p[3] = {0}; for(int i = 29; i >= 0; i -= 3) { p[0] = p[0] << 1 | bit_read(data, i); p[1] = p[1] << 1 | bit_read(data, i - 1); p[2] = p[2] << 1 | bit_read(data, i - 2); } if(!subghz_protocol_secplus_v2_mix_invet(invert, p)) return false; if(!subghz_protocol_secplus_v2_mix_order_decode(order, p)) return false; data = order << 4 | invert; int k = 0; for(int i = 6; i >= 0; i -= 2) { roll_array[k++] = (data >> i) & 0x03; if(roll_array[k] == 3) { FURI_LOG_E(TAG, "Roll_Array FAIL"); return false; } } for(int i = 8; i >= 0; i -= 2) { roll_array[k++] = (p[2] >> i) & 0x03; if(roll_array[k] == 3) { FURI_LOG_E(TAG, "Roll_Array FAIL"); return false; } } fixed[0] = p[0] << 10 | p[1]; return true; } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance * @param packet_1 first part of the message */ static void subghz_protocol_secplus_v2_remote_controller(SubGhzBlockGeneric* instance, uint64_t packet_1) { uint32_t fixed_1[1]; uint8_t roll_1[9] = {0}; uint32_t fixed_2[1]; uint8_t roll_2[9] = {0}; uint8_t rolling_digits[18] = {0}; if(subghz_protocol_secplus_v2_decode_half(packet_1, roll_1, fixed_1) && subghz_protocol_secplus_v2_decode_half(instance->data, roll_2, fixed_2)) { rolling_digits[0] = roll_2[8]; rolling_digits[1] = roll_1[8]; rolling_digits[2] = roll_2[4]; rolling_digits[3] = roll_2[5]; rolling_digits[4] = roll_2[6]; rolling_digits[5] = roll_2[7]; rolling_digits[6] = roll_1[4]; rolling_digits[7] = roll_1[5]; rolling_digits[8] = roll_1[6]; rolling_digits[9] = roll_1[7]; rolling_digits[10] = roll_2[0]; rolling_digits[11] = roll_2[1]; rolling_digits[12] = roll_2[2]; rolling_digits[13] = roll_2[3]; rolling_digits[14] = roll_1[0]; rolling_digits[15] = roll_1[1]; rolling_digits[16] = roll_1[2]; rolling_digits[17] = roll_1[3]; uint32_t rolling = 0; for(int i = 0; i < 18; i++) { rolling = (rolling * 3) + rolling_digits[i]; } // Max value = 2^28 (268435456) if(rolling >= 0x10000000) { FURI_LOG_E(TAG, "Rolling FAIL"); instance->cnt = 0; instance->btn = 0; instance->serial = 0; } else { instance->cnt = subghz_protocol_blocks_reverse_key(rolling, 28); instance->btn = fixed_1[0] >> 12; instance->serial = fixed_1[0] << 20 | fixed_2[0]; } } else { instance->cnt = 0; instance->btn = 0; instance->serial = 0; } } /** * Security+ 2.0 half-message encoding * @param roll_array[] roll_array part * @param fixed[] fixed part * @return return data */ static uint64_t subghz_protocol_secplus_v2_encode_half(uint8_t roll_array[], uint32_t fixed) { uint64_t data = 0; uint16_t p[3] = {(fixed >> 10) & 0x3FF, fixed & 0x3FF, 0}; uint8_t order = roll_array[0] << 2 | roll_array[1]; uint8_t invert = roll_array[2] << 2 | roll_array[3]; p[2] = (uint16_t)roll_array[4] << 8 | roll_array[5] << 6 | roll_array[6] << 4 | roll_array[7] << 2 | roll_array[8]; if(!subghz_protocol_secplus_v2_mix_order_encode(order, p)) return 0; if(!subghz_protocol_secplus_v2_mix_invet(invert, p)) return 0; for(int i = 0; i < 10; i++) { data <<= 3; data |= bit_read(p[0], 9 - i) << 2 | bit_read(p[1], 9 - i) << 1 | bit_read(p[2], 9 - i); } data |= ((uint64_t)order) << 34 | ((uint64_t)invert) << 30; return data; } /** * Security+ 2.0 message encoding * @param instance SubGhzProtocolEncoderSecPlus_v2* */ static void subghz_protocol_secplus_v2_encode(SubGhzProtocolEncoderSecPlus_v2* instance) { uint32_t fixed_1[1] = {instance->generic.btn << 12 | instance->generic.serial >> 20}; uint32_t fixed_2[1] = {instance->generic.serial & 0xFFFFF}; uint8_t rolling_digits[18] = {0}; uint8_t roll_1[9] = {0}; uint8_t roll_2[9] = {0}; instance->generic.cnt++; //ToDo it is not known what value the counter starts if(instance->generic.cnt > 0xFFFFFFF) instance->generic.cnt = 0xE500000; uint32_t rolling = subghz_protocol_blocks_reverse_key(instance->generic.cnt, 28); for(int8_t i = 17; i > -1; i--) { rolling_digits[i] = rolling % 3; rolling /= 3; } roll_2[8] = rolling_digits[0]; roll_1[8] = rolling_digits[1]; roll_2[4] = rolling_digits[2]; roll_2[5] = rolling_digits[3]; roll_2[6] = rolling_digits[4]; roll_2[7] = rolling_digits[5]; roll_1[4] = rolling_digits[6]; roll_1[5] = rolling_digits[7]; roll_1[6] = rolling_digits[8]; roll_1[7] = rolling_digits[9]; roll_2[0] = rolling_digits[10]; roll_2[1] = rolling_digits[11]; roll_2[2] = rolling_digits[12]; roll_2[3] = rolling_digits[13]; roll_1[0] = rolling_digits[14]; roll_1[1] = rolling_digits[15]; roll_1[2] = rolling_digits[16]; roll_1[3] = rolling_digits[17]; instance->secplus_packet_1 = SECPLUS_V2_HEADER | SECPLUS_V2_PACKET_1 | subghz_protocol_secplus_v2_encode_half(roll_1, fixed_1[0]); instance->generic.data = SECPLUS_V2_HEADER | SECPLUS_V2_PACKET_2 | subghz_protocol_secplus_v2_encode_half(roll_2, fixed_2[0]); } static LevelDuration subghz_protocol_encoder_secplus_v2_add_duration_to_upload(ManchesterEncoderResult result) { LevelDuration data = {.duration = 0, .level = 0}; switch(result) { case ManchesterEncoderResultShortLow: data.duration = subghz_protocol_secplus_v2_const.te_short; data.level = false; break; case ManchesterEncoderResultLongLow: data.duration = subghz_protocol_secplus_v2_const.te_long; data.level = false; break; case ManchesterEncoderResultLongHigh: data.duration = subghz_protocol_secplus_v2_const.te_long; data.level = true; break; case ManchesterEncoderResultShortHigh: data.duration = subghz_protocol_secplus_v2_const.te_short; data.level = true; break; default: furi_crash("SubGhz: ManchesterEncoderResult is incorrect."); break; } return level_duration_make(data.level, data.duration); } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderSecPlus_v2 instance */ static void subghz_protocol_encoder_secplus_v2_get_upload(SubGhzProtocolEncoderSecPlus_v2* instance) { furi_assert(instance); size_t index = 0; ManchesterEncoderState enc_state; manchester_encoder_reset(&enc_state); ManchesterEncoderResult result; //Send data packet 1 for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(!manchester_encoder_advance( &enc_state, bit_read(instance->secplus_packet_1, i - 1), &result)) { instance->encoder.upload[index++] = subghz_protocol_encoder_secplus_v2_add_duration_to_upload(result); manchester_encoder_advance( &enc_state, bit_read(instance->secplus_packet_1, i - 1), &result); } instance->encoder.upload[index++] = subghz_protocol_encoder_secplus_v2_add_duration_to_upload(result); } instance->encoder.upload[index] = subghz_protocol_encoder_secplus_v2_add_duration_to_upload( manchester_encoder_finish(&enc_state)); if(level_duration_get_level(instance->encoder.upload[index])) { index++; } instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_secplus_v2_const.te_long * 136); //Send data packet 2 manchester_encoder_reset(&enc_state); for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(!manchester_encoder_advance( &enc_state, bit_read(instance->generic.data, i - 1), &result)) { instance->encoder.upload[index++] = subghz_protocol_encoder_secplus_v2_add_duration_to_upload(result); manchester_encoder_advance( &enc_state, bit_read(instance->generic.data, i - 1), &result); } instance->encoder.upload[index++] = subghz_protocol_encoder_secplus_v2_add_duration_to_upload(result); } instance->encoder.upload[index] = subghz_protocol_encoder_secplus_v2_add_duration_to_upload( manchester_encoder_finish(&enc_state)); if(level_duration_get_level(instance->encoder.upload[index])) { index++; } instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_secplus_v2_const.te_long * 136); instance->encoder.size_upload = index; } bool subghz_protocol_encoder_secplus_v2_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderSecPlus_v2* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } uint8_t key_data[sizeof(uint64_t)] = {0}; if(!flipper_format_read_hex( flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Secplus_packet_1"); break; } for(uint8_t i = 0; i < sizeof(uint64_t); i++) { instance->secplus_packet_1 = instance->secplus_packet_1 << 8 | key_data[i]; } subghz_protocol_secplus_v2_remote_controller( &instance->generic, instance->secplus_packet_1); subghz_protocol_secplus_v2_encode(instance); //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); subghz_protocol_encoder_secplus_v2_get_upload(instance); //update data for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF; } if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Unable to add Key"); break; } for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->secplus_packet_1 >> i * 8) & 0xFF; } if(!flipper_format_update_hex( flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Unable to add Secplus_packet_1"); break; } instance->encoder.is_runing = true; res = true; } while(false); return res; } void subghz_protocol_encoder_secplus_v2_stop(void* context) { SubGhzProtocolEncoderSecPlus_v2* instance = context; instance->encoder.is_runing = false; } LevelDuration subghz_protocol_encoder_secplus_v2_yield(void* context) { SubGhzProtocolEncoderSecPlus_v2* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) { instance->encoder.is_runing = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } bool subghz_protocol_secplus_v2_create_data( void* context, FlipperFormat* flipper_format, uint32_t serial, uint8_t btn, uint32_t cnt, uint32_t frequency, FuriHalSubGhzPreset preset) { furi_assert(context); SubGhzProtocolEncoderSecPlus_v2* instance = context; instance->generic.serial = serial; instance->generic.cnt = cnt; instance->generic.btn = btn; instance->generic.data_count_bit = (uint8_t)subghz_protocol_secplus_v2_const.min_count_bit_for_found; subghz_protocol_secplus_v2_encode(instance); bool res = subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset); uint8_t key_data[sizeof(uint64_t)] = {0}; for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->secplus_packet_1 >> i * 8) & 0xFF; } if(res && !flipper_format_write_hex(flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Unable to add Secplus_packet_1"); res = false; } return res; } void* subghz_protocol_decoder_secplus_v2_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderSecPlus_v2* instance = malloc(sizeof(SubGhzProtocolDecoderSecPlus_v2)); instance->base.protocol = &subghz_protocol_secplus_v2; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_secplus_v2_free(void* context) { furi_assert(context); SubGhzProtocolDecoderSecPlus_v2* instance = context; free(instance); } void subghz_protocol_decoder_secplus_v2_reset(void* context) { furi_assert(context); // SubGhzProtocolDecoderSecPlus_v2* instance = context; // does not reset the decoder because you need to get 2 parts of the package } static bool subghz_protocol_secplus_v2_check_packet(SubGhzProtocolDecoderSecPlus_v2* instance) { if((instance->decoder.decode_data & SECPLUS_V2_HEADER_MASK) == SECPLUS_V2_HEADER) { if((instance->decoder.decode_data & SECPLUS_V2_PACKET_MASK) == SECPLUS_V2_PACKET_1) { instance->secplus_packet_1 = instance->decoder.decode_data; } else if( ((instance->decoder.decode_data & SECPLUS_V2_PACKET_MASK) == SECPLUS_V2_PACKET_2) && (instance->secplus_packet_1)) { return true; } } return false; } void subghz_protocol_decoder_secplus_v2_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderSecPlus_v2* instance = context; ManchesterEvent event = ManchesterEventReset; switch(instance->decoder.parser_step) { case SecPlus_v2DecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_long * 130) < subghz_protocol_secplus_v2_const.te_delta * 100)) { //Found header Security+ 2.0 instance->decoder.parser_step = SecPlus_v2DecoderStepDecoderData; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->secplus_packet_1 = 0; manchester_advance( instance->manchester_saved_state, ManchesterEventReset, &instance->manchester_saved_state, NULL); manchester_advance( instance->manchester_saved_state, ManchesterEventLongHigh, &instance->manchester_saved_state, NULL); manchester_advance( instance->manchester_saved_state, ManchesterEventShortLow, &instance->manchester_saved_state, NULL); } break; case SecPlus_v2DecoderStepDecoderData: if(!level) { if(DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_short) < subghz_protocol_secplus_v2_const.te_delta) { event = ManchesterEventShortLow; } else if( DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_long) < subghz_protocol_secplus_v2_const.te_delta) { event = ManchesterEventLongLow; } else if( duration >= (uint32_t)(subghz_protocol_secplus_v2_const.te_long * 2 + subghz_protocol_secplus_v2_const.te_delta)) { if(instance->decoder.decode_count_bit >= subghz_protocol_secplus_v2_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(subghz_protocol_secplus_v2_check_packet(instance)) { if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); instance->decoder.parser_step = SecPlus_v2DecoderStepReset; } } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; manchester_advance( instance->manchester_saved_state, ManchesterEventReset, &instance->manchester_saved_state, NULL); manchester_advance( instance->manchester_saved_state, ManchesterEventLongHigh, &instance->manchester_saved_state, NULL); manchester_advance( instance->manchester_saved_state, ManchesterEventShortLow, &instance->manchester_saved_state, NULL); } else { instance->decoder.parser_step = SecPlus_v2DecoderStepReset; } } else { if(DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_short) < subghz_protocol_secplus_v2_const.te_delta) { event = ManchesterEventShortHigh; } else if( DURATION_DIFF(duration, subghz_protocol_secplus_v2_const.te_long) < subghz_protocol_secplus_v2_const.te_delta) { event = ManchesterEventLongHigh; } else { instance->decoder.parser_step = SecPlus_v2DecoderStepReset; } } if(event != ManchesterEventReset) { bool data; bool data_ok = manchester_advance( instance->manchester_saved_state, event, &instance->manchester_saved_state, &data); if(data_ok) { instance->decoder.decode_data = (instance->decoder.decode_data << 1) | data; instance->decoder.decode_count_bit++; } } break; } } uint8_t subghz_protocol_decoder_secplus_v2_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderSecPlus_v2* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool subghz_protocol_decoder_secplus_v2_serialize( void* context, FlipperFormat* flipper_format, uint32_t frequency, FuriHalSubGhzPreset preset) { furi_assert(context); SubGhzProtocolDecoderSecPlus_v2* instance = context; bool res = subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset); uint8_t key_data[sizeof(uint64_t)] = {0}; for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->secplus_packet_1 >> i * 8) & 0xFF; } if(res && !flipper_format_write_hex(flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Unable to add Secplus_packet_1"); res = false; } return res; } bool subghz_protocol_decoder_secplus_v2_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderSecPlus_v2* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); break; } uint8_t key_data[sizeof(uint64_t)] = {0}; if(!flipper_format_read_hex( flipper_format, "Secplus_packet_1", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Missing Secplus_packet_1"); break; } for(uint8_t i = 0; i < sizeof(uint64_t); i++) { instance->secplus_packet_1 = instance->secplus_packet_1 << 8 | key_data[i]; } res = true; } while(false); return res; } void subghz_protocol_decoder_secplus_v2_get_string(void* context, string_t output) { furi_assert(context); SubGhzProtocolDecoderSecPlus_v2* instance = context; subghz_protocol_secplus_v2_remote_controller(&instance->generic, instance->secplus_packet_1); string_cat_printf( output, "%s %db\r\n" "Pk1:0x%lX%08lX\r\n" "Pk2:0x%lX%08lX\r\n" "Sn:0x%08lX Btn:0x%01X\r\n" "Cnt:0x%03X\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->secplus_packet_1 >> 32), (uint32_t)instance->secplus_packet_1, (uint32_t)(instance->generic.data >> 32), (uint32_t)instance->generic.data, instance->generic.serial, instance->generic.btn, instance->generic.cnt); }